998 resultados para PHYSICAL SCIENCES
Resumo:
The structure and operation of CdTe, CdZnTe and Si pixel detectors based on crystalline semiconductors, bump bonding and CMOS technology and developed mainly at Oy Simage Ltd. And Oy Ajat Ltd., Finland for X- and gamma ray imaging are presented. This detector technology evolved from the development of Si strip detectors at the Finnish Research Institute for High Energy Physics (SEFT) which later merged with other physics research units to form the Helsinki Institute of Physics (HIP). General issues of X-ray imaging such as the benefits of the method of direct conversion of X-rays to signal charge in comparison to the indirect method and the pros and cons of photon counting vs. charge integration are discussed. A novel design of Si and CdTe pixel detectors and the analysis of their imaging performance in terms of SNR, MTF, DQE and dynamic range are presented in detail. The analysis shows that directly converting crystalline semiconductor pixel detectors operated in the charge integration mode can be used in X-ray imaging very close to the theoretical performance limits in terms of efficiency and resolution. Examples of the application of the developed imaging technology to dental intra oral and panoramic and to real time X-ray imaging are given. A CdTe photon counting gamma imager is introduced. A physical model to calculate the photo peak efficiency of photon counting CdTe pixel detectors is developed and described in detail. Simulation results indicates that the charge sharing phenomenon due to diffusion of signal charge carriers limits the pixel size of photon counting detectors to about 250 μm. Radiation hardness issues related to gamma and X-ray imaging detectors are discussed.
Resumo:
The TOTEM experiment at the LHC will measure the total proton-proton cross-section with a precision better than 1%, elastic proton scattering over a wide range in momentum transfer -t= p^2 theta^2 up to 10 GeV^2 and diffractive dissociation, including single, double and central diffraction topologies. The total cross-section will be measured with the luminosity independent method that requires the simultaneous measurements of the total inelastic rate and the elastic proton scattering down to four-momentum transfers of a few 10^-3 GeV^2, corresponding to leading protons scattered in angles of microradians from the interaction point. This will be achieved using silicon microstrip detectors, which offer attractive properties such as good spatial resolution (<20 um), fast response (O(10ns)) to particles and radiation hardness up to 10^14 "n"/cm^2. This work reports about the development of an innovative structure at the detector edge reducing the conventional dead width of 0.5-1 mm to 50-60 um, compatible with the requirements of the experiment.
Resumo:
This thesis is a study of the x-ray scattering properties of tissues and tumours of the breast. Clinical radiography is based on the absorption of the x-rays when passing right through the human body and gives information about the densities of the tissues. Besides being absorbed, x-rays may change their direction within the tissues due to elastic scattering or even to refraction. The phenomenon of scattering is a nuisance to radiography in general, and to mammography in particular, because it reduces the quality of the images. However, scattered x-rays bear very useful information about the structure of the tissues at the supra-molecular level. Some pathologies, like breast cancer, produce alterations to the structures of the tissues, being especially evident in collagen-rich tissues. On the other hand, the change of direction due to refraction of the x-rays on the tissue boundaries can be mapped. The diffraction enhanced imaging (DEI) technique uses a perfect crystal to convert the angular deviations of the x-rays into intensity variations, which can be recorded as images. This technique is of especial interest in the cases were the densities of the tissues are very similar (like in mammography) and the absorption images do not offer enough contrast. This thesis explores the structural differences existing in healthy and pathological collagen in breast tissue samples by the small-angle x-ray scattering (SAXS) technique and compares these differences with the morphological information found in the DEI images and the histo-pathology of the same samples. Several breast tissue samples were studied by SAXS technique in the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. Scattering patterns of the different tissues of the breast were acquired and compared with the histology of the samples. The scattering signals from adipose tissue (fat), connective tissue (collagen) and necrotic tissue were identified. Moreover, a clear distinction could be done between the scattering signals from healthy collagen and from collagen from an invasive tumour. Scattering from collagen is very characteristic. It includes several scattering peaks and scattering features that carry information about the size and the spacing of the collagen fibrils in the tissues. It was found that the collagen fibrils in invaded tumours were thinner and had a d-spacing length 0,7% longer that fibrils from healthy tumours. The scattering signals from the breast tissues were compared with the histology by building colour-coded maps across the samples. They were also imaged with the DEI technique. There was a total agreement between the scattering maps, the morphological features seen in the images and the information of the histo- pathological examination. The thesis demonstrates that the x-ray scattering signal can be used to characterize tissues and that it carries important information about the pathological state of the breast tissues, thus showing the potential of the SAXS technique as a possible diagnostic tool for breast cancer.
Resumo:
Tässä väitöskirjassa perehdytään magneettisen rekonnektion ilmenemismuotoihin ja vaikutuksiin Maan magnetosfäärissä. Keskeisenä tutkimusvälineenä käytetään magnetohydrodynaamista (MHD) Gumics-magnetosfäärisimulaatiota. Työssä kehitetään myös uusia menetelmiä simulaatiossa ilmenevän rekonnektion tunnistamiseksi ja mittaamiseksi. MHD-simulaatio sopii suuren mittakaavan ilmiöiden tarkasteluun, joten kuvaa rekonnektiosta täydennetään pienen mittakaavan piirteiden osalta Cluster-satelliittien avulla. Tärkein tutkimuksen tuoma edistysaskel menetelmien saralla on rekonnektioviivan paikallistaminen topologisesti erityyppisten magneettikenttäviivojen alueiden liitoskohdassa olevana erottajaviivana neljän kentän tienoon menetelmää käyttäen. Tämä topologinen lähestymistapa on hyödyllinen erityisesti magnetopausilla, jonka monimutkainen geometria tekee magneettikentän paikalliseen käyttäytymiseen perustuvien rekonnektioviivan etsintätapojen soveltamisen hankalaksi. Topologisesti määritelty rekonnektioviiva on myös helppo tunnistaa magnetosfäärin globaalin konvektion solmukohdaksi. Magnetopausin rekonnektioviivan käyttäytyminen Gumicsissa noudattaa komponenttirekonnektio-olettamaan pohjautuvia teoreettisia ennusteita. Rekonnektion kvantitatiivinen tarkastelu Gumics-simulaatiossa perustuu energian muuntumiseen, joka lasketaan Poyntingin vektorin divergenssinä tai Poyntingin vuona valitun umpinaisen pinnan läpi. Rekonnektioon liittyvän energian muuntumisen jakautumista magnetopausilla tarkastellaan energian muuntumisen pintatiheyden avulla ja rekonnektion kokonaismäärää rekonnektiotehon avulla. Magnetopausin ja pyrstön rekonnektiotehot ovat simulaatiossa samaa suuruusluokkaa. Tärkeimmät magnetopausin rekonnektiotehoa säätelevät parametrit ovat aurinkotuulen nopeus ja aurinkotuulen magneettikentän suunta. Magnetopausin rekonnektio puolestaan säätelee energian ja aineen pääsyä magnetosfääriin, joskaan magnetopausin läpäisevät vuot eivät ole aivan suoraan verrannollisia rekonnektiotehoon. Pyrstön rekonnektioteho sen sijaan on suoraan verrannollinen magnetopausilta tulevaan energiavuohon; pyrstörekonnektio Gumicsissa on siis ulkoista pakotetta seuraava passiivinen energian käsittelijä. Simulaation tuottama rekonnektio on realistinen magnetosfäärin globaalissa mittakaavassa tarkasteltuna, mutta satelliittihavainnot paljastavat rekonnektiosta simulaation erottelukykyä pienimittakaavaisempia piirteitä. Havaintopuolella tämän väitöstutkimuksen tärkein löytö on protonien diffuusioalueen rakenteeseen kuuluvien Hallin kenttien kääntyminen pyrstön virtalevyn aaltoilun mukana.
Resumo:
By detecting leading protons produced in the Central Exclusive Diffractive process, p+p → p+X+p, one can measure the missing mass, and scan for possible new particle states such as the Higgs boson. This process augments - in a model independent way - the standard methods for new particle searches at the Large Hadron Collider (LHC) and will allow detailed analyses of the produced central system, such as the spin-parity properties of the Higgs boson. The exclusive central diffractive process makes possible precision studies of gluons at the LHC and complements the physics scenarios foreseen at the next e+e− linear collider. This thesis first presents the conclusions of the first systematic analysis of the expected precision measurement of the leading proton momentum and the accuracy of the reconstructed missing mass. In this initial analysis, the scattered protons are tracked along the LHC beam line and the uncertainties expected in beam transport and detection of the scattered leading protons are accounted for. The main focus of the thesis is in developing the necessary radiation hard precision detector technology for coping with the extremely demanding experimental environment of the LHC. This will be achieved by using a 3D silicon detector design, which in addition to the radiation hardness of up to 5×10^15 neutrons/cm2, offers properties such as a high signal-to- noise ratio, fast signal response to radiation and sensitivity close to the very edge of the detector. This work reports on the development of a novel semi-3D detector design that simplifies the 3D fabrication process, but conserves the necessary properties of the 3D detector design required in the LHC and in other imaging applications.
Resumo:
Data assimilation provides an initial atmospheric state, called the analysis, for Numerical Weather Prediction (NWP). This analysis consists of pressure, temperature, wind, and humidity on a three-dimensional NWP model grid. Data assimilation blends meteorological observations with the NWP model in a statistically optimal way. The objective of this thesis is to describe methodological development carried out in order to allow data assimilation of ground-based measurements of the Global Positioning System (GPS) into the High Resolution Limited Area Model (HIRLAM) NWP system. Geodetic processing produces observations of tropospheric delay. These observations can be processed either for vertical columns at each GPS receiver station, or for the individual propagation paths of the microwave signals. These alternative processing methods result in Zenith Total Delay (ZTD) and Slant Delay (SD) observations, respectively. ZTD and SD observations are of use in the analysis of atmospheric humidity. A method is introduced for estimation of the horizontal error covariance of ZTD observations. The method makes use of observation minus model background (OmB) sequences of ZTD and conventional observations. It is demonstrated that the ZTD observation error covariance is relatively large in station separations shorter than 200 km, but non-zero covariances also appear at considerably larger station separations. The relatively low density of radiosonde observing stations limits the ability of the proposed estimation method to resolve the shortest length-scales of error covariance. SD observations are shown to contain a statistically significant signal on the asymmetry of the atmospheric humidity field. However, the asymmetric component of SD is found to be nearly always smaller than the standard deviation of the SD observation error. SD observation modelling is described in detail, and other issues relating to SD data assimilation are also discussed. These include the determination of error statistics, the tuning of observation quality control and allowing the taking into account of local observation error correlation. The experiments made show that the data assimilation system is able to retrieve the asymmetric information content of hypothetical SD observations at a single receiver station. Moreover, the impact of real SD observations on humidity analysis is comparable to that of other observing systems.
Resumo:
The geomagnetic field is one of the most fundamental geophysical properties of the Earth and has significantly contributed to our understanding of the internal structure of the Earth and its evolution. Paleomagnetic and paleointensity data have been crucial in shaping concepts like continental drift, magnetic reversals, as well as estimating the time when the Earth's core and associated geodynamo processes begun. The work of this dissertation is based on reliable Proterozoic and Holocene geomagnetic field intensity data obtained from rocks and archeological artifacts. New archeomagnetic field intensity results are presented for Finland, Estonia, Bulgaria, Italy and Switzerland. The data were obtained using sophisticated laboratory setups as well as various reliability checks and corrections. Inter-laboratory comparisons between three laboratories (Helsinki, Sofia and Liverpool) were performed in order to check the reliability of different paleointensity methods. The new intensity results fill up considerable gaps in the master curves for each region investigated. In order to interpret the paleointensity data of the Holocene period, a novel and user-friendly database (GEOMAGIA50) was constructed. This provided a new tool to independently test the reliability of various techniques and materials used in paleointensity determinations. The results show that archeological artifacts, if well fired, are the most suitable materials. Also lavas yield reliable paleointensity results, although they appear more scattered. This study also shows that reliable estimates are obtained using the Thellier methodology (and its modifications) with reliability checks. Global paleointensity curves during Paleozoic and Proterozoic have several time gaps with few or no intensity data. To define the global intensity behavior of the Earth's magnetic field during these times new rock types (meteorite impact rocks) were investigated. Two case histories are presented. The Ilyinets (Ukraine) impact melt rocks yielded a reliable paleointensity value at 440 Ma (Silurian), whereas the results from Jänisjärvi impact melts (Russian Karelia, ca. 700 Ma) might be biased towards high intensity values because of non-ideal magnetic mineralogy. The features of the geomagnetic field at 1.1 Ga are not well defined due to problems related to reversal asymmetries observed in Keweenawan data of the Lake Superior region. In this work new paleomagnetic, paleosecular variation and paleointensity results are reported from coeval diabases from Central Arizona and help understanding the asymmetry. The results confirm the earlier preliminary observations that the asymmetry is larger in Arizona than in Lake Superior area. Two of the mechanisms proposed to explain the asymmetry remain plausible: the plate motion and the non-dipole influence.