958 resultados para PHOSPHOINOSITIDE 3-KINASE


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The fission yeast Rad3p checkpoint protein is a member of the phosphatidylinositol 3-kinase-related family of protein kinases, which includes human ATMp. Mutation of the ATM gene is responsible for the disease ataxia-telangiectasia. The kinase domain of Rad3p has previously been shown to be essential for function. Here, we show that although this domain is necessary, it is not sufficient, because the isolated kinase domain does not have kinase activity in vitro and cannot complement a rad3 deletion strain. Using dominant negative alleles of rad3, we have identified two sites N-terminal to the conserved kinase domain that are essential for Rad3p function. One of these sites is the putative leucine zipper, which is conserved in other phosphatidylinositol 3-kinase-related family members. The other is a novel motif, which may also mediate Rad3p protein–protein interactions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have shown previously that interleukin-4 (IL-4) protects TS1αβ cells from apoptosis, but very little is known about the mechanism by which IL-4 exerts this effect. We found that Akt activity, which is dependent on phosphatidylinositol 3 kinase, is reduced in IL-4-deprived TS1αβ cells. Overexpression of wild-type Akt or a constitutively active Akt mutant protects cells from IL-4 deprivation-induced apoptosis. Readdition of IL-4 before the commitment point is able to restore Akt activity. We also show expression and c-Jun N-terminal kinase 2 activation after IL-4 deprivation. Overexpression of the constitutively activated Akt mutant in IL-4-deprived cells correlates with inhibition of c-Jun N-terminal kinase 2 activity. Finally, TS1αβ survival is independent of Bcl-2, Bcl-x, or Bax.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The TEL/PDGFβR fusion protein is the product of the t(5;12) translocation in patients with chronic myelomonocytic leukemia. The TEL/PDGFβR is an unusual fusion of a putative transcription factor, TEL, to a receptor tyrosine kinase. The translocation fuses the amino terminus of TEL, containing the helix-loop-helix (HLH) domain, to the transmembrane and cytoplasmic domain of the PDGFβR. We hypothesized that TEL/PDGFβR self-association, mediated by the HLH domain of TEL, would lead to constitutive activation of the PDGFβR tyrosine kinase domain and cellular transformation. Analysis of in vitro-translated TEL/PDGFβR confirmed that the protein self-associated and that self-association was abrogated by deletion of 51 aa within the TEL HLH domain. In vivo, TEL/PDGFβR was detected as a 100-kDa protein that was constitutively phosphorylated on tyrosine and transformed the murine hematopoietic cell line Ba/F3 to interleukin 3 growth factor independence. Transformation of Ba/F3 cells required the HLH domain of TEL and the kinase activity of the PDGFβR portion of the fusion protein. Immunoblotting demonstrated that TEL/PDGFβR associated with multiple signaling molecules known to associate with the activated PDGFβR, including phospholipase C γ1, SHP2, and phosphoinositol-3-kinase. TEL/PDGFβR is a novel transforming protein that self-associates and activates PDGFβR-dependent signaling pathways. Oligomerization of TEL/PDGFβR that is dependent on the TEL HLH domain provides further evidence that the HLH domain, highly conserved among ETS family members, is a self-association motif.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mechanisms underlying neuronal ischemic preconditioning, a phenomenon in which brief episodes of ischemia protect against the lethal effects of subsequent periods of prolonged ischemia, are poorly understood. Ischemia can be modeled in vitro by oxygen-glucose deprivation (OGD). We report here that OGD preconditioning induces p21ras (Ras) activation in an N-methyl-d-aspartate receptor- and NO-dependent, but cGMP-independent, manner. We demonstrate that Ras activity is necessary and sufficient for OGD tolerance in neurons. Pharmacological inhibition of Ras, as well as a dominant negative mutant Ras, block OGD preconditioning whereas a constitutively active form of Ras promotes neuroprotection against lethal OGD insults. In contrast, the activity of phosphatidyl inositol 3-kinase is not required for OGD preconditioning because inhibition of phosphatidyl inositol 3-kinase with a chemical inhibitor or with a dominant negative mutant does not have any effect on the development of OGD tolerance. Furthermore, using recombinant adenoviruses and pharmacological inhibitors, we show that downstream of Ras the extracellular regulated kinase cascade is required for OGD preconditioning. Our observations indicate that activation of the Ras/extracellular regulated kinase cascade by NO is a critical mechanism for the development of OGD tolerance in cortical neurons, which may also play an important role in ischemic preconditioning in vivo.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

DNA-dependent protein kinase (DNA-PK) consists of a heterodimeric protein (Ku) and a large catalytic subunit (DNA-PKcs). The Ku protein has double-stranded DNA end-binding activity that serves to recruit the complex to DNA ends. Despite having serine/threonine protein kinase activity, DNA-PKcs falls into the phosphatidylinositol 3-kinase superfamily. DNA-PK functions in DNA double-strand break repair and V(D)J recombination, and recent evidence has shown that mouse scid cells are defective in DNA-PKcs. In this study we have cloned the cDNA for the carboxyl-terminal region of DNA-PKcs in rodent cells and identified the existence of two differently spliced products in human cells. We show that DNA-PKcs maps to the same chromosomal region as the mouse scid gene. scid cells contain approximately wild-type levels of DNA-PKcs transcripts, whereas the V-3 cell line, which is also defective in DNA-PKcs, contains very reduced transcript levels. Sequence comparison of the carboxyl-terminal region of scid and wild-type mouse cells enabled us to identify a nonsense mutation within a highly conserved region of the gene in mouse scid cells. This represents a strong candidate for the inactivating mutation in DNA-PKcs in the scid mouse.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Treatment of quiescent Swiss 3T3 fibroblasts with serum, or with the phosphatase inhibitors okadaic acid and vanadate, induced a 2- to 11-fold activation of the serine/ threonine RAC protein kinase (RAC-PK). Kinase activation was accompanied by decreased mobility of RAC-PK on SDS/PAGE such that three electrophoretic species (a to c) of the kinase were detected by immunoblot analysis, indicative of differentially phosphorylated forms. Addition of vanadate to arrested cells increased the RAC-PK phosphorylation level 3-to 4-fold. Unstimulated RAC-PK was phosphorylated predominantly on serine, whereas the activated kinase was phosphorylated on both serine and threonine residues. Treatment of RAC-PK in vitro with protein phosphatase 2A led to kinase inactivation and an increase in electrophoretic mobility. Deletion of the N-terminal region containing the pleckstrin homology domain did not affect RAC-PK activation by okadaic acid, but it reduced vanadate-stimulated activity and also blocked the serum-induced activation. Deletion of the serine/threonine rich C-terminal region impaired both RAC-PKalpha basal and vanadate-stimulated activity. Studies using a kinase-deficient mutant indicated that autophosphorylation is not involved in RAC-PKalpha activation. Stimulation of RAC-PK activity and electrophoretic mobility changes induced by serum were sensitive to wortmannin. Taken together the results suggest that RAC-PK is a component of a signaling pathway regulated by phosphatidylinositol (PI) 3-kinase, whose action is required for RAC-PK activation by phosphorylation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Src homology 3 (SH3) domain is a 50-aa modular unit present in many cellular proteins involved in intracellular signal transduction. It functions to direct protein-protein interactions through the recognition of proline-rich motifs on associated proteins. SH3 domains are important regulatory elements that have been demonstrated to specify distinct regulatory pathways important for cell growth, migration, differentiation, and responses to the external milieu. By the use of synthetic peptides, ligands have been shown to consist of a minimum core sequence and to bind to SH3 domains in one of two pseudosymmetrical orientations, class I and class II. The class I sites have the consensus sequence ZP(L/P)PP psi P whereas the class II consensus is PP psi PPZ (where psi is a hydrophobic residue and Z is a SH3 domain-specific residue). We previously showed by M13 phage display that the Src, Fyn, Lyn, and phosphatidylinositol 3-kinase (PI3K) SH3 domains preferred the same class I-type core binding sequence, RPLPP psi P. These results failed to explain the specificity for cellular proteins displayed by SH3 domains in cells. In the current study, class I and class II core ligand sequences were displayed on the surface of bacteriophage M13 with five random residues placed either N- or C-terminal of core ligand residues. These libraries were screened for binding to the Src, Fyn, Lyn, Yes, and PI3K SH3 domains. By this approach, additional ligand residue preferences were identified that can increase the affinity of SH3 peptide ligands at least 20-fold compared with core peptides. The amino acids selected in the flanking sequences were similar for Src, Fyn, and Yes SH3 domains; however, Lyn and PI3K SH3 domains showed distinct binding specificities. These results indicate that residues that flank the core binding sequences shared by many SH3 domains are important determinants of SH3 binding affinity and selectivity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The synthesis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], the immediate precursor of intracellular signals generated by calcium-mobilizing hormones and growth factors, is initiated by the conversion of phosphatidylinositol to phosphatidylinositol 4-phosphate [PtdIns(4)P] by phosphatidylinositol 4-kinase (PtdIns 4-kinase). Although cells contain several PtdIns 4-kinases, the enzyme responsible for regulating the synthesis of hormone-sensitive PtdIns(4,5)P2 pools has not been identified. In this report we describe the inhibitory effect of micromolar concentrations of wortmannin (WT) on the synthesis of hormone-sensitive PtdIns(4)P and PtdIns(4,5)P2 pools in intact adrenal glomerulosa cells, and the presence of a WT-sensitive PtdIns 4-kinase in adrenocortical extracts. In addition to its sensitivity to the PtdIns 3-kinase inhibitor WT, this enzyme is distinguished from the recognized membrane-bound PtdIns 4-kinases by its molecular size and weak membrane association. Inhibition of this PtdIns 4-kinase by WT results in rapid loss of the hormone-sensitive PtdIns(4,5)P2 pool in angiotensin II-stimulated glomerulosa cells. Consequently, WT treatment inhibits the sustained but not the initial increases in inositol 1,4,5-trisphosphate and cytoplasmic [Ca2+] in a variety of agonist-stimulated cells, including adrenal glomerulosa cells, NIH 3T3 fibroblasts, and Jurkat lymphoblasts. These results indicate that a specific WT-sensitive PtdIns 4-kinase is critical for the maintenance of the agonist-sensitive polyphosphoinositide pool in several cell types.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The addition of insulin during in vitro culture has beneficial effects on rabbit preimplantation embryos leading to increased cell proliferation and reduced apoptosis. We have previously described the expression of the insulin receptor (IR) and the insulin-responsive glucose transporters (GLUT) 4 and 8 in rabbit preimplantation embryos. However, the effects of insulin on IR signaling and glucose metabolism have not been investigated in rabbit embryos. In the present study, the effects of 170 nM insulin on IR, GLUT4 and GLUT8 mRNA levels, Akt and Erk phosphorylation, GLUT4 translocation and methyl glucose transport were studied in cultured day 3 to day 6 rabbit embryos. Insulin stimulated phosphorylation of the mitogen-activated protein kinase (MAPK) Erk1/2 and levels of IR and GLUT4 mRNA, but not phosphorylation of the phosphatidylinositol 3-kinase-dependent protein kinase, Akt, GLUT8 mRNA levels, glucose uptake or GLUT4 translocation. Activation of the MAPK signaling pathway in the absence of GLUT4 translocation and of a glucose transport response suggest that in the rabbit preimplantation embryo insulin is acting as a growth factor rather than a component of glucose homeostatic control.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sorting nexins are a large family of proteins that contain the phosphoinositide-binding Phox homology (PX) domain. A number of sorting nexins are known to bind to PtdIns(3)P, which mediates their localization to membranes of the endocytic pathway. We show here that sorting nexin 5 (SNX5) can be recruited to two distinct membrane compartments. In non-stimulated cells, the PX domain was independently targeted to endosomal structures and colocalized with full-length SNX5. The membrane binding of the PX domain was inhibited by the PI 3-kinase inhibitor, wortmannin. Although SNX5 colocalized with a fluid-phase marker and was found predominantly within a PtdIns(3)P-rich endosomal domain, very little colocalization was observed between SNX5 and the PtdIns(3)P-binding protein, EEA1. Using liposome-based binding assays, we have shown that the PX domain of SNX5 interacts not only with PtdIns(3)P but also with PtdIns(3,4)P-2. In response to EGF stimulation, either the SNX5-PX domain or full-length SNX5 was rapidly recruited to the plasma membrane. The localization of SNX1, which does not bind PtdIns(3,4)P-2, was unaffected by EGF signalling. Therefore, SNX5 is localized to a subdomain of the early endosome distinct from EEA1 and, following EGF stimulation and elevation of PtdIns(3,4)P-2, is also transiently recruited to the plasma membrane. These results indicate that SNX5 may have functions not only associated with endosomal sorting but also with the phosphoinositide-signalling pathway.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Classical cadherin adhesion molecules are fundamental determinants of cell-cell recognition that function in cooperation with the actin cytoskeleton. Productive cadherin-based cell recognition is characterized by a distinct morphological process of contact zone extension, where limited initial points of adhesion are progressively expanded into broad zones of contact. We recently demonstrated that E-cadherin ligation recruits the Arp2/3 actin nucleator complex to the plasma membrane in regions where cell contacts are undergoing protrusion and extension. This suggested that Arp2/3 might generate the protrusive forces necessary for cell surfaces to extend upon one another during contact assembly. We tested this hypothesis in mammalian cells by exogenously expressing the CA region of N-WASP. This fragment, which potently inhibits Arp2/3-mediated actin assembly in vitro, also effectively reduced actin assembly at cadherin adhesive contacts. Blocking Arp2/3 activity by this strategy profoundly reduced the ability of cells to extend cadherin adhesive contacts but did not affect cell adhesiveness. These findings demonstrate that Arp2/3 activity is necessary for cells to efficiently extend and assemble cadherin-based adhesive contacts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have previously shown that human papillomavirus virus-like particles (VLPs) are able to activate the Ras/MAP kinase pathway. Ras can also elicit an anti-apoptotic signal via PI3-kinase so we investigated this further. Here we show that binding of VLPs from HPV types 6b, 18, 3 1, 35 and BPV1 results in activation of PI3-kinase. Activation was achieved by either L1 or L1/L2 VLPs and was dependent on both VLP-cell interaction and correct conformation of the virus particle. VLP-induced PI3-kinase activity resulted in efficient downstream signaling to Akt and consequent phosphorylation of FKHR and GSK3 beta. We also present evidence that PV signaling is activated via the alpha 6 beta 4 integrin. These data suggest that papillomaviruses use a common receptor that is able to signal through to Ras. Combined activation of the Ras/MAP kinase and PI3-kinase pathways may be beneficial for the virus by increasing cell numbers and producing an environment more conducive to infection. (c) 2006 Elsevier Inc. All rights reserved

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Protein kinase C (PKC) comprises a superfamily of isoenzymes, many of which are activated by cofactors such as diacylglycerol and phosphatidylserine. In order to be capable of activation, PKC must first undergo a series of phosphorylations. In turn, activated PKC phosphorylates a wide variety of intracellular target proteins and has multiple functions in signal transduced cellular regulation. A role for PKC activation had been noted in several renal diseases, but two that have had most investigation are diabetic nephropathy and kidney cancer. In diabetic nephropathy, an elevation in diacylglycerol and/or other cofactor stimulants leads to an increase in activity of certain PKC isoforms, changes that are linked to the development of dysfunctional vasculature. The ability of isoform-specific PKC inhibitors to antagonize diabetes-induced vascular disease is a new avenue for treatment of this disorder. In the development and progressive invasiveness of kidney cancer, increased activity of several specific isoforms of PKC has been noted. It is thought that this may promote the kidney cancer's inherent resistance to apoptosis, in natural regression or after treatments, or it may promote the invasiveness of renal cancers via cellular differentiation pathways. In general, however, a more complete understanding of the functions of individual PKC isoforms in the kidney, and development or recognition of specific inhibitors or promoters of their activation, will be necessary to apply this knowledge for treatment of cellular dysregulation in renal disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is well established that adenosine receptors are involved in cardioprotection and that protein kinase B (PKB) is associated with cell survival. Therefore, in this study we have investigated whether adenosine receptors (A1, A2A and A3) activate PKB by Western blotting and determined the involvement of phosphatidylinositol 3-kinase (PI-3K)/PKB in adenosine-induced preconditioning in cultured newborn rat cardiomyocytes. Adenosine (non-selective agonist), CPA (A1 selective agonist) and Cl-IB-MECA (A(3) selective agonist) all increased PKB phosphorylation in a time- and concentration-dependent manner. The combined maximal response to CPA and Cl-IB-MECA was similar to the increase in PKB phosphorylation induced by adenosine alone. CGS 21680 (A2A selective agonist) did not stimulate an increase in PKB phosphorylation. Adenosine, CPA and Cl-IB-MECA-mediated PKB phosphorylation were inhibited by pertussis toxin (PTX blocks G(i)/G(o)-protein), genistein (tyrosine kinase inhibitor), PP2 (Src tyrosine kinase inhibitor) and by the epidermal growth factor (EGF) receptor tyrosine kinase inhibitor AG 1478. The PI-3K inhibitors wortmannin and LY 294002 blocked A(1) and A(3) receptor-mediated PKB phosphorylation. The role of PI-3K/PKB in adenosine-induced preconditioning was assessed by monitoring Caspase 3 activity and lactate dehydrogenase (LDH) release induced by exposure of cardiomyocytes to 4 h hypoxia (0.5% O2) followed by 18 h reoxygenation (HX4/R). Pre-treatment with wortmannin had no significant effect on the ability of adenosine-induced preconditioning to reduce the release of LDH or Caspase 3 activation following HX4/R. In conclusion, we have shown for the first time that adenosine A1 and A3 receptors trigger increases in PKB phosphorylation in rat cardiomyocytes via a G1/G0-protein and tyrosine kinase-dependent pathway. However, the PI-3K/PKB pathway does not appear to be involved in adenosine-induced cardioprotection by preconditioning Adenosine A1 receptor .

Relevância:

90.00% 90.00%

Publicador:

Resumo:

AMP-activated protein kinase (AMPK) is a key regulator of cell energy homeostasis. More recently, it has become apparent that AMPK regulates cell proliferation, migration and inflammation. Previous evidence has suggested that AMPK may influence proliferation and invasion by regulating the pro-proliferative mitogen-activated protein kinases (MAPKs). However, the mechanisms underlying this crosstalk between AMPK and MAPK signalling are not fully understood. As AMPK activation has been reported to have anti-proliferative effects, there has been increasing interest in AMPK activation as a therapeutic target for tumourigenesis. The aim of this study was to investigate whether AMPK activation influenced prostate cancer (PC) cell line proliferation, migration and signalling. Therefore, different PC cell lines were incubated with two structurally-unrelated molecules that activate AMPK by different mechanisms, AICAR and A769662. Both chemicals activated AMPK in a concentration- and time-dependent manner in PC3, DU145 and LNCaP cell lines. AMPK activity as assessed by AMPK activating phosphorylation as well as phosphorylation of the AMPK substrate ACC increased along with tumour severity in PC biopsies. Furthermore, both activators of AMPK decreased cell proliferation and migration in the androgen-independent PC cell lines PC3 and DU145. Inhibition of proliferation by A769662 was attenuated in AMPK α1-/- AMPK α2-/- knockout (KO) mouse embryonic fibroblasts (MEFs) compared to wild type (WT) MEFs, and the inhibitory effect on migration of AICAR lost significance in PC3 cells infected with adenoviruses expressing a dominant negative AMPK α mutant, indicating these effects are partially mediated by AMPK. Furthermore, long-term activation of AMPK was associated with inhibition of both the phosphatidylinositol 3’-kinase/protein kinase B (PI3K/Akt) signalling pathway in addition to the extracellular signal-regulated kinase 1/2 (ERK1/2) signalling pathway. Indeed, the actions of AMPK activators on PC cell line viability were mimicked by selective inhibitors of Akt and ERK1/2 pathways. In contrast to the effects of prolonged incubation with AMPK activators, short-term incubation with AMPK activators had no effect on epidermal growth factor (EGF)-stimulated ERK1/2 phosphorylation in PC cell lines. In addition, AMPK activation did not influence phosphorylation of the other MAPK family members p38 and JNK. Interestingly, both AICAR and A769662 decreased EGF-stimulated ERK5 phosphorylation in PC3, DU145 and LNCaP cells as assessed with an anti-phospho-ERK5 antibody. Further characterisation of this effect indicated that prior stimulation with the AMPK activators had no effect on ERK5 phosphorylation stimulated by transient transfection with a constitutively active ERK5 kinase (MEK5DD), which represents the only known canonical kinase for ERK5. Intriguingly, the pattern of EGF-stimulated ERK5 phosphorylation was distinct from that mediated by MEK5DD activation of ERK5. This finding indicates that AMPK activation inhibits EGF-stimulated ERK5 phosphorylation at a point at or above the level of MEK5, although why EGF and constitutively active MEK5 stimulate markedly different immunoreactive species recognised by the anti-phospho-ERK5 antibody requires further study. A769662 had a tendency to reduce EGF-stimulated ERK5 phosphorylation in WT MEFs, yet was without effect in MEFs lacking AMPK. These data indicate that AMPK may underlie the effect of A769662 to reduce EGF-stimulated ERK5 phosphorylation. Prolonged stimulation of PC cell lines with AICAR or A769662 inhibited EGF-stimulated Akt Ser473 phosphorylation, whereas only incubation with A769662 rapidly inhibited Akt phosphorylation. This difference in the actions of the different AMPK activators may suggest an AMPK-independent effect of A769662. Furthermore, AICAR increased phosphorylation of Akt in WT MEFs, an effect that was absent in MEFs lacking AMPK, indicating that this effect of AICAR may be AMPK-dependent. Taken together, the data presented in this study suggest that AMPK activators markedly inhibit proliferation and migration of PC cell lines, reduce EGF-stimulated ERK1/2 and Akt phosphorylation after prolonged incubation and rapidly inhibit ERK5 phosphorylation. Both AMPK activators exhibit a number of effects that are likely to be independent of AMPK in PC cell lines, although inhibition of ERK1/2, ERK5 and Akt may underlie the effects of AMPK activators on proliferation, viability and migration. Further studies are required to understand the crosstalk between those signalling pathways and their underlying significance in PC progression.