374 resultados para PHEA hydrogel
Resumo:
The self-assembly in aqueous solution of three novel telechelic conjugates comprising a central hydrophilic polymer and short (trimeric or pentameric) tyrosine end-caps has been investigated. Two of the conjugates have a central poly(oxyethylene) (polyethylene oxide, PEO) central block with different molar masses. The other conjugate has a central poly(l-alanine) (PAla) sequence in a purely amino-acid based conjugate. All three conjugates self-assemble into β-sheet based fibrillar structures, although the fibrillar morphology revealed by cryogenic-TEM is distinct for the three polymers—in particular the Tyr5-PEO6k-Tyr5 forms a population of short straight fibrils in contrast to the more diffuse fibril aggregates observed for Tyr5-PEO2k-Tyr5 and Tyr3-PAla-Tyr3. Hydrogel formation was not observed for these samples (in contrast to prior work on related systems) up to quite high concentrations, showing that it is possible to prepare solutions of peptide–polymer-peptide conjugates with hydrophobic end-caps without conformational constraints associated with hydrogelation. The Tyr5-PEO6k-Tyr5 shows significant PEO crystallization upon drying in contrast to the Tyr5-PEO2k-Tyr5 conjugate. Our findings point to the remarkable ability of short hydrophobic peptide end groups to modulate the self-assembly properties of polymers in solution in model peptide-capped “associative polymers”. Retention of fluidity at high conjugate concentration may be valuable in potential future applications of these conjugates as bioresponsive or biocompatible materials, for example exploiting the enzyme-responsiveness of the tyrosine end-groups
Resumo:
Monomer free hydrogel nanoparticles (nanogels) were prepared by crosslinking preformed poly(N-vinyl-2-pyrrolidone) (PVP) entrapped in the aqueous pool of hexadecyltrimethylammonium bromide reverse micelles using the Fenton reaction. The PVP nanoparticles were spherical with a dry diameter of 27 nm. The diameter of the swollen particles was ten times higher, i.e., a swelling ratio, Q, above 900, characterizing this preparation as superabsorbent. PVP nanogel swelling was dependent on bound Fe(3+) and varied with pH and ionic strength. Nanogel deswelling by salt followed the anions lyotropic series, i.e., SCN(-) < HSO(3)(-) < NO(3)(-) < I(-) < Cl(-) < CH(3)COO(-) < CF(3)SO(3)(-). The value of Q reached 6,000 in iron-free PVP nanoparticles at low pH, making this nanogel one of the most efficient swelling systems so far described.
Resumo:
heterogeneous catalyst such as a silicoaluminophosphate, molecular sieve with AEL (Aluminophosphate eleven) structure such as SAPO-11, was synthesized through the hydrothermal method starting from silica, pseudoboehmite, orthophosphoric acid (85%) and water, in the presence of a di-isopropylamine organic template. For the preparation of SAPO-11 in a dry basis it was used as reactants: DIPA; H3PO4; SiO4; Pseudoboehmite and distilled water. The crystallization process occurred when the reactive hydrogel was charged into a vessel and autoclaved at 200ºC for a period of 72 hours under autogeneous pressure. The obtained material was washed, dried and calcined to remove the molecular sieves of DIPA. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (FT-IR), nitrogen adsorption (BET) and thermal analysis (TG/DTG). The acidic properties were determined using adsorption of nbutylamine followed by programmed thermodessorption. This method revealed that SAPO-11 shows an acidity that ranges from weak to moderate. However, a small quantity of strong acid sites could be detected there. The deactivation of the catalysts was conducted by artificial coking followed by the cracking of the n-hexane in a fixed bed with a continuous flow micro-reactor coupled on line to a gas chromatograph. The main products obtained were: ethane, propane, isobutene, n-butane, n-pentane and isopentane. The Vyazovkin (model-free) kinetics method was used to determine the regeneration and removal of the coke
Resumo:
O trabalho teve como objetivo avaliar a sobrevivência do clone H13 de Eucalyptus urograndis sob dois manejos hídricos de viveiro, plantados em dois solos, com e sem a adição de polímero hidroabsorvente (hidrogel). O plantio foi realizado em vasos mantidos em estufa, com dois tipos de solo: um arenoso e outro argiloso. Cada vaso recebeu 2,5 L de solo, um litro de água e o hidrogel na proporção de 0,4 g vaso-1 (120 mL de gel). O delineamento experimental adotado foi o inteiramente casualizado, com três repetições. Os sintomas de estresse, nos vários níveis avaliados, sempre se manifestaram primeiro nas plantas no solo argiloso, de modo mais acentuado naquelas que foram mantidas sem estresse de água na fase de viveiro. Isso garantiu que as plantas sobrevivessem por um período menor sem água, variando de 14 a 20 dias (com e sem hidrogel, respectivamente), enquanto, no solo arenoso, a sobrevivência foi maior, de 29 a 34 dias (com e sem hidrogel, respectivamente). Apesar da não significância estatística, os resultados com o hidrogel possibilitam, em ambos os solos, maior flexibilidade operacional na intervenção com novas irrigações.
Resumo:
Chronic venous disease (CVD) is evident among the chronic diseases and affects the elderly population and primarily is responsible for leg ulcers in this population. The use of dressings in the care of a venous ulcer is a fundamental part of the treatment for healing, however, evidence to assist in choosing the best dressing is scarce. The main objective of this study was to evaluate the effectiveness of treatment with hydrogel in the healing of venous ulcers using search methods, synthesis of information and statistical research through a systematic review and meta-analysis. Randomized controlled trials were selected in the following databases: CENTRAL; DARE; NHS EED; MEDLINE; EMBASE; CINAHL. Beyond these databases three websites were consulted to identify ongoing studies: ClinicalTrials.gov, OMS ICTRP e ISRCTN. The primary outcomes were analyzed: complete wound healing, incidence of wound infection and the secondary were: changes in ulcer size, time to ulcer healing, recurrence of ulcer, quality of life of participants, pain and costs of treatment. Four studies are currently included in the review with a total of 250 participants. The use of hydrogel appears to be superior to conventional dressing, gauze soaked in saline, for the healing of venous leg ulcers; 16/30 patients showed complete healing of ulcers (RR 5,33, 95%CI [1,73,16,42]). The alginate gel was shown to be more effective when compared to the hydrogel dressing in reduction of the wound area; 61,2% (± 26,2%) with alginate e 19,4% (± 24,3%) with hydrogel at the end of four weeks of treatment. Manuka honey has shown to be similar to the hydrogel dressings in percentage of area reduction. This review demonstrated that there is no evidence available about the effectiveness of the hydrogel compared to other types of dressings on the healing of venous leg ulcers of the lower limbs, thus demonstrating the need of future studies to assist health professionals in choosing the correct dressing.
Resumo:
Heterogeneous catalysts such as aluminophosphate and silicoaluminophosphate, molecular sieves with AEL of ALPO-11 and SAPO-11, were synthesized by the hydrothermal method with the following molar composition: 2.9 Al +3.2 P + 3.5 DIPA +32.5 H20 (ALPO-11); 2.9 Al +3.2 P + 0.5 Si + 3.5 DIPA +32.5 H20 (SAPO-11) starting from silica (only in the SAPO-11), pseudoboehmite, orthophosphoric acid (85%) and water, in the presence of a di-isopropylamine organic template. The crystallization process occurred when the reactive hydrogel was charged into a vessel and autoclaved at 170ºC for a period of 48 hours under autogeneous pressure. The obtained materials were washed, dried and calcined to remove the molecular sieves of DIPA. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (FT-IR), thermo gravimetric differential thermal analysis (TG/DTA) and nitrogen adsorption (BET). The acidic properties were determined using adsorption of n-butylamine followed by programmed thermodessorption. This method revealed that ALPO-11 has weaker acid sites due to structural defects, while SAPO-11 shows an acidity that ranges from weak to moderate. However, a small quantity of strong acid sites could be detected there. The deactivation of the catalysts was conducted by the cracking of the n-hexane in a fixed bed continuous flow microrreator coupled on line to a gas chromatograph. The main products obtained were: ethane, propane, isobutene, n-butane, n-pentane and isopentane. The Vyazovkin (model-free) kinetics method was used to determine the regeneration and removal of the organic template
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
OBJETIVOS: O presente estudo teve como objetivo cultivar condrócitos retirados da articulação do joelho de coelhos encapsulados em hidrogel de alginato (HA) e caracterizar a produção de matriz extracelular (ECM). MÉTODOS: A cartilagem articular foi removida do joelho de coelhos, com três a seis meses, fragmentada em pedaços de 1mm e submetida à digestão enzimática. Uma concentração de 1x106 céls/mL foram ressuspensas em uma solução de alginato de sódio a 1,5% (w/v), em seguida fez-se o processo de gelatinização em CaCl2 (102 mM), permitindo a formação do HA e cultivo em meio DMEM-F12 durante quatro semanas. A distribuição das células e a ECM foram acessadas através das secções histológicas coradas com e azul de toluidina hematoxilina e eosina (HE). RESULTADOS: Houve um aumento no número e na viabilidade dos condrócitos durante as quatro semanas de cultura. Através das análises histológicas dos HAs corados com azul de toluidina e HE foi possível observar a distribuição definida dos condrócitos no hidrogel, assemelhando-se a grupos isógenos e formação de matriz territorial. CONCLUSÃO: Este estudo demonstrou a eficiência do HA como arcabouço para ser usado na cultura de condrócitos, constituindo uma alternativa no reparo de lesões na cartilagem articular.
Resumo:
This study aimed to evaluate the use of hydrogel in the survival of cuttings of Eucalyptus urograndis produced with different types of substrate and water management. The experiment was carried out using cuttings of the same clone, produced up to 50 days after the cutting, in two different nurseries ("C" and "E"). Then, all the cuttings were allocated to the same nursery for 80 days, where they received irrigation at different frequencies. After this period, the cuttings were transplanted into polyethylene pots, in clay soil, with and without hydrogel. The results obtained were subjected to the variance technique for totally randomized experiments. Data analysis revealed that the plants with hydrogel displayed delayed symptoms of water deficit. Regardless of the cutting's origin ("C" or "E"), the hydrogel influenced survival, guaranteeing 37 days without additional irrigation. The nursery water management only influenced the plants from nursery "E", and the plants adapted to the lack of water (water management with one daily irrigation) took more time to present symptoms of water deficit.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
MCM-41 material was synthesized starting from hydrogel containing colloidal fumed silica, sodium silicate, cetyltetramethylammonium bromide (CTMABr) as surfactant, and distilled water as solvent. These reactants were mixed to obtain a gel with the following composition: 4SiO(2):1Na(2)O:1CTMABr:200H(2)O. The hydrogel with pH=14 was hydrothermally treated at 100 degreesC, for 4 days. Each day, the pH was measured, and then adjusted to 9.5-10 by using 30% acetic acid solution. Thermogravimetry was the main technique, which was used to monitor the participation of the surfactant on the MCM-41 nanophase, being possible to determine the temperature ranges relative to water desorption as well as the surfactant decomposition and silanol condensation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work was carried out to evaluate the use of a hydrogel polymer in melon crop under different irrigation depths, with the objective of improve water retention, and efficiency of water and nutrient utilization by plants. One trial consisted of two treatments with four replications: a treatment with irrigation depth corresponding to 75% of gross depth and 27g of the soil conditioner per plant; the control with irrigation depth equal to the gross depth and without conditioner. The following characteristics were evaluated: root length, yield and quality of melon fruits. Root growth was bigger in the plants where soil conditioner was used. Use of soil conditioner provided an increase on melon yield and number of fruits per linear meter. Mean fruit weight and total soluble solids were not influenced by soil conditioner application and irrigation depth reduction.
Resumo:
Excitation and dynamic emission spectra of Eu3+ ions were simultaneously used with FTIR and Raman spectroscopy to study the structural evolution during SnO2 sol → gel → xerogel conversion. Results make evident an increase of the surroundings symmetry for the Eu3+ ions dissolved in SnO2 matrix and a decrease of the amount of hydroxo groups (Sn-OH) during drying. These phenomena were associated to the pursuit of the condensation reaction after gelation. © 1994 Kluwer Academic Publishers.