971 resultados para PD-AG


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study provides an electrodeposition based synthesis method for producing solid solution structured Ag-Ni nanoparticles. It was also observed that the room temperature stable solid solution configuration for the electrodeposited Ag-Ni nanoparticle was a kinetically frozen atomic arrangement and not a thermodynamically stable structure as upon annealing of the Ag-Ni nanoparticles in the ambient atmosphere the solid solution structure decomposed producing phases that were oxides of Ag and Ni. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.esl120008] All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treeing in low density polyethylene (LDPE) filled with alumina nanocomposite as well as unfilled LDPE samples stressed with 50 Hz ac voltage has been studied. The tree inception voltage was monitored for various samples with different nano-filler loadings and it is seen that there is an increase in tree inception voltage with filler loading in LDPE. Treeing pattern and tree growth duration for unfilled and nano-filled LDPE samples have also been studied. Different tree growth patterns as well as a slower tree growth with increase in filler loading in LDPE nanocomposites were observed. The observed slow propagation of tree growth with filler loading is attributed to the changes in the polymer crystalline morphology induced by the presence of nano-particles and the greater ability of the nanoparticles to resist discharge growth. SEM studies carried out to determine the morphology of unfilled and nano-filled LDPE showed an increase in lamellae packing in LDPE nanocomposites and this increased lamellar density leads to a reduction in the tree propagation rate. Partial discharge activities were also monitored during the electrical tree growth in both the unfilled and the nano-filled LDPE samples and were found to be significantly different. PD magnitude and the number of PD pulses per cycle were found to be lower with electrical tree growth duration in LDPE nanocomposites as compared to unfilled LDPE. The same trend was seen with increased filler loading also.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel in situ core@shell structure consisting of nanoparticles of Ag (Ag Nps) and AgI in agarose matrix (Ag@ AgI/agarose) has been synthesized as a hybrid, in order to have an efficient antibacterial agent for repetitive usage with no toxicity. The synthesized core@shell structure is very well characterized by XRD, UV-visible, photoluminescence, and TEM. A detailed antibacterial studies including repetitive cycles are carried out on Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria in saline water, both in dark and on exposure to visible light. The hybrid could be recycled for the antibacterial activity and is nontoxic toward human cervical cancer cells (HeLa cells). The water insoluble Ag@AgI in agarose matrix forms a good coating on quartz, having good mechanical strength. EPR and TEM studies are carried out on the Ag@AgI/agarose and the bacteria, respectively, to elucidate a possible mechanism for killing of the bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical deposition of Pd on conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) coated carbon paper electrode results in the formation of a stable dendritic film of Pd. In the absence of the PEDOT under-layer, Pd deposition is smooth and non-dendritic. Both Pd-PEDOT/C and Pd/C electrodes are studied for electrooxidation of 1,2-propanediol (PD) in an alkaline electrolyte. Owing to enhanced surface area and surface defects on dendritic Pd, the Pd-PEDOT/C electrode exhibits greater catalytic activity than the Pd/C electrode. Cyclic voltammetry studies suggest that peak current density increases with an increase in concentrations of PD and NaOH in the electrolyte. Repetitive cyclic voltammetry and amperometry studies indicate that Pd-PEDOT/C electrode possesses a high electrochemical stability with greater catalytic activity than Pd/C electrode toward electrooxidation of PD. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anatase Ag-TiO2 microwires with high sensitivity and photocatalytic activity were synthesized via polyol synthesis route followed by a simple surface modification and chemical reduction approach for attachment of silver. The superior performance of the Ag-TiO2 composite microwires is attributed to improved surface reactivity, mass transport and catalytic property as a result of wiring the TiO2 surface with Ag nanoparticles. Compared to the TiO2 microwires, Ag-TiO2 microwires exhibited three times higher sensitivity in the detection of cationic dye such as methylene blue. Photocatalytic degradation efficiency was also found to be significantly enhanced at constant illumination protocols and observation times. The improved performance is attributed to the formation of a Schottky barrier between TiO2 and Ag nanoparticles leading to a fast transport of photogenerated electrons to the Ag nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth mechanism of phases and atomic mechanism of diffusion are discussed in the Pd-Sn system. The Kirkendall marker plane location indicates that the PdSn4 phase grows because of diffusion of Sn. Atomic arrangement in the crystal indicates that Sn can diffuse through its own sublattice but Pd cannot diffuse unless antisites are present. The negligible diffusion of Pd indicates the absence of Pd antisites. The activation energy value indicates that the contribution from grain boundary diffusion cannot be neglected although experiments were conducted in the homologous temperature range of 0.7-0.79.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new solid state synthetic route has been developed toward metal and bimetallic alloy nanoparticles from metal salts employing amine-boranes, as the reducing agent. During the reduction, amine-borane plays a dual role: acts as a reducing agent and reduces the metal salts to their elemental form and simultaneously generates a stabilizing agent in situ which controls the growth of the particles and stabilizes them in the nanosize regime. Employing different amine-boranes with differing reducing ability (ammonia borane (AB), dimethylamine borane (DMAB), and triethylamine borane (TMAB)) was found to have a profound effect on the particle size and the size distribution. Usage of AB as the reducing agent provided the smallest possible size with best size distribution. Employment of TMAB also afforded similar results; however, when DMAB was used as the reducing agent it resulted in larger sized nanoparticles that are polydisperse too. In the AB mediated reduction, BNHx polymer generated in situ acts as a capping agent whereas, the complexing amine of the other amine-boranes (DMAB and TMAB) play the same role. Employing the solid state route described herein, monometallic Au, Ag, Cu, Pd, and Ir and bimetallic CuAg and CuAu alloy nanoparticles of <10 nm were successfully prepared. Nucleation and growth processes that control the size and the size distribution of the resulting nanoparticles have been elucidated in these systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Undoped and co-doped (Ag, Co) ZnO powders were synthesized by chemical co-precipitation method without using any capping agent. The X-ray diffraction results indicate that the undoped and co-doped ZnO powders have pure hexagonal structure and are consisting of nanosized single-crystalline particles. The size of the nanoparticles increases with increasing Ag concentration from 1 to 5 mol% as compared to that of undoped ZnO. The presence of substitution dopants of Ag and Co in the ZnO host material was confirmed by the Energy dispersive analysis of X-rays (EDAX). Optical absorption measurements indicate blue shift and red-shift in the absorption band edge upon doping concentration of Ag and blue emission was observed by photoluminescence (PL) studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sn-Ag-Cu (SAC) solders are susceptible to appreciable microstructural coarsening during storage or service. This results in evolution of joint properties over time, and thereby influences the long-term reliability of microelectronic packages. Accurate prediction of this aging behavior is therefore critical for joint reliability predictions. Here, we study the precipitate coarsening behavior in two Sn-Ag-Cu (SAC) alloys, namely Sn-3.0Ag-0.5Cu and Sn-1.0Cu-0.5Cu, under different thermo-mechanical excursions, including isothermal aging at 150 degrees C for various lengths of time and thermo-mechanical cycling between -25 degrees C and 125 degrees C, with an imposed shear strain of similar to 19.6% per cycle, for different number of cycles. During isothermal aging and the thermo-mechanical cycling up to 200 cycles, Ag3Sn precipitates undergo rapid, monotonous coarsening. However, high number of thermo-mechanical cycling, usually between 200 and 600 cycles, causes dissolution and re-precipitation of precipitates, resulting in a fine and even distribution. Also, recrystallization of Sn-grains near precipitate clusters was observed during severe isothermal aging. Such responses are quite unusual for SAC solder alloys. In the regime of usual precipitate coarsening in these SAC alloys, an explicit parameter, which captures the thermo-mechanical history dependence of Ag3Sn particle size, was defined. Brief mechanistic description for the recrystallization of Sn grains during isothermal aging and reprecipitation of the Ag3Sn due to high number of thermo-mechanical cycles are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the activity of Ti0.84Pt0.01Fe0.15O2-delta and Ti0.73Pd0.02Fe0.25O2-delta catalysts towards the CO oxidation and water gas shift (VMS) reaction. Both the catalysts were synthesized in the nano crystalline form by a low temperature sonochemical method and characterized by different techniques such as XRD, FT-Raman, TEM, FT-IR, XPS and BET surface analyzer. H-2-TPR results corroborate the intimate contact between noble metal and Fe ions in the both catalysts that facilitates the reducibility of the support. In the absence of feed CO2 and H-2, nearly 100% conversion of CO to CO2 with 100% H-2 selectivity was observed at 300 degrees C and 260 degrees C respectively, for Ti0.84Pt0.01Fe0.15O2-delta and Ti0.73Pd0.02Fe0.25O2-delta catalyst. However, the catalytic performance of Ti0.73Pd0.02Fe0.25O2-delta deteriorates in the presence of feed CO2 and H-2. The change in the support reducibility is the primary reason for the significant increase in the activity for CO oxidation and WGS reaction. The effect of Fe addition was more significant in Ti0.73Pd0.02Fe0.25O2-delta than Ti0.84Pt0.01Fe0.15O2-delta. Based on the spectroscopic evidences and surface phenomena, a hybrid reaction scheme utilizing both surface hydroxyl groups and the lattice oxygen was hypothesized over these catalysts for WGS reaction. The mechanisms based on the formate and redox pathway were used to fit the ldnetic data. The analysis of experimental data shows the redox mechanism is the dominant pathway over these catalysts. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ag-Fe nanoparticles with a highly Ag rich average composition were synthesized by the sonochemical route. Silver-iron system exhibits a wide miscibility gap in the bulk materials. Interestingly, a graded compositional profile along the nanoparticle radius was observed. Regions at and near the surface of the nanoparticle contained both Ag and Fe atoms. The composition got relatively deficient Fe towards the center of the particle with particle core made up of pure Ag. Alloying of Ag and Fe is confirmed by the absence of diffraction signal corresponding to pure Fe phase and presence of a paramagnetic phase in nanoparticles containing a diamagnetic (Ag) and ferromagnetic (Fe) elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, electrodeposition technique was used to produce Ag-Ni nanowires. Ag-Ni system shows extremely high bulk immiscibility. Nanowire morphology was achieved by employing an anodic alumina membrane having pores of similar to 200 nm diameter. Microstructure of as-deposited wire was composed of nano-sized solid solution structured Ag-Ni nanoparticles embedded in a matrix of pure Ag phase. It is proposed that the two phase microstructure resulted from an initial formation of solid solution structured nanoparticles in the alumina template pore followed by nucleation of pure Ag phase over the particles which eventually grew to form the matrix phase. (C) 2013 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructured Pd-modified Ni/CeO2 catalyst was synthesized in a single step by solution combustion method and characterized by XRD, TEM, XPS, TPR and BET surface analyzer techniques. The catalytic performance of this compound was investigated by performing the water gas shift (WGS) and catalytic hydrogen combustion (CHC) reaction. The present compound is highly active and selective (100%) toward H-2 production for the WGS reaction. A lack of CO methanation activity is an important finding of present study and this is attributed to the ionic substitution of Pd and Ni species in CeO2. The creation of oxide vacancies due to ionic substitution of aliovalent ions induces dissociation of H2O that is responsible for the improved catalytic activity for WGS reaction. The combined H-2-TPR and XPS results show a synergism exists among Pd, Ni and ceria support. The redox reaction mechanism was used to correlate experimental data for the WGS reaction and a mechanism involving the interaction of adsorbed H-2 and O-2 through the hydroxyl species was proposed for CHC reaction. The parity plot shows a good correspondence between the experimental and predicted reaction rates. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanodendritic Pd is electrodeposited on poly(3,4-ethylenedioxythiophene) (PEDOT) coated carbon paper electrode. Electrodeposited Pd is non-dendritic in the absence of PEDOT. The electrooxidation of C-3-aliphatic alcohols, namely, propanol (PA), 1,2- propanediol (1, 2-PD), 1, 3-propanediol (1, 3-PD), and glycerol (GL) is studied in 1.0 M NaOH. The catalytic activity of nanodendritic Pd is greater than that of non-dendritic Pd for oxidation of the four alcohols molecules. Among those molecules the oxidation rate increases as: PA< 1, 2-PD < 1, 3-PD < GL. The cyclic voltammetric oxidation current peak appearing in the reverse direction of the sweep is greatly influenced by the nature of alcohol. The reduction of oxide film on Pd surface is attributed to affect the magnitude of backward peak current density. The amperometry and repeated cyclic voltammetry data suggest a high stability of nanodendritic Pd in alkaline medium. Glycerol is expected to be an appropriate alcohol for application as a fuel in alkaline fuel cells at nanodendritic electrodeposited Pd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unique three-component self-assembly of a cis-blocked 90 degrees Pd(II) acceptor with amixture of tri- and tetra-imidazole donors led to the self-sorting of a Pd-7 molecular boat with an internal nanocavity, which catalyses the Knoevenagel condensation of a series of aromatic aldehydes with 1,3-dimethylbarbituric acid and Meldrum's acid in aqueous media.