993 resultados para PASSIVE-MATRIX DISPLAY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activation of the matrix metalloproteinase 2 (MMP-2) has been shown to play a major role in the proteolysis of extracellular matrix (ECM) associated with tumor invasion. Although the precise mechanism of this activation remains elusive, levels of the membrane type 1-MMP (MT1-MMP) at the cell surface and of the tissue inhibitor of MMP-2 (TIMP-2) appear to be two important determinants. Induction of MMP-2 activation in cells cultivated on collagen type I gels indicated that the ECM is important in the regulation of this process. In this study, we show that SPARC/osteonectin, a small ECM- associated matricellular glycoprotein, can induce MMP-2 activation in two invasive breast cancer cell lines (MDA-MB-231 and BT549) but not in a noninvasive counterpart (MCF7), which lacks MT1-MMP. Using a set of peptides from different regions of SPARC, we found that peptide 1.1 (corresponding to the NH2-terminal region of the protein) contained the activity that induced NIMP-2 activation. Despite the requirement for MT1-MMP, seen in MCF-7 cells transfected with MT1-MMP, the activation of MMP-2 by SPARC peptide 1.1 was not associated with increased steady-state levels of MT1-MMP mRNA or protein in either MT1-MMP-transfected MCF-7 cells or constitutively expressing MDA- MB-231 and BT549 cells. We did, however, detect decreased levels of TIMP-2 protein in the media of cells incubated with peptide 1.1 or recombinant SPARC; thus, the induction of MMP-2 activation by SPARC might be due in part to a diminution of TIMP-2 protein. We conclude that SPARC, and specifically its NH2-terminal domain, regulates the activation of MMP-2 at the cell surface and is therefore likely to contribute to the proteolytic pathways associated with tumor invasion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The suggested model for pro-matrix metalloproteinase-2 (proMMP-2) activation by membrane type 1 MMP (MT1-MMP) implicates the complex between MT1-MMP and tissue inhibitor of MMP-2 (TIMP-2) as a receptor for proMMP-2. To dissect this model and assess the pathologic significance of MMP-2 activation, an artificial receptor for proMMP-2 was created by replacing the signal sequence of TIMP-2 with cytoplasmic/transmembrane domain of type II transmembrane mosaic serine protease (MSP-T2). Unlike TIMP-2, MSP-T2 served as a receptor for proMMP-2 without inhibiting MT1-MMP, and generated TIMP-2-free active MMP-2 even at a low level of MT1-MMP. Thus, MSP-T2 did not affect direct cleavage of the substrate testican-1 by MT1-MMP, whereas TIMP-2 inhibited it even at the level that stimulates proMMP-2 processing. Expression of MSP-T2 in HT1080 cells enhanced MMP-2 activation by endogenous MT1-MMP and caused intensive hydrolysis of collagen gel. Expression of MSP-T2 in U87 glioma cells, which express a trace level of endogenous MT1-MMP, induced MMP-2 activation and enhanced cell-associated protease activity, activation of extracellular signal-regulated kinase, and metastatic ability into chick embryonic liver and lung. MT1-MMP can exert both maximum MMP-2 activation and direct cleavage of substrates with MSP-T2, which cannot be achieved with TIMP-2. These results suggest that MMP-2 activation by MT1-MMP potentially amplifies protease activity, and combination with direct cleavage of substrate causes effective tissue degradation and enhances tumor invasion and metastasis, which highlights the complex role of TIMP-2. MSP-T2 is a unique tool to analyze physiologic and pathologic roles of MMP-2 and MT1-MMP in comparison with TIMP-2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to activate pro-matrix metalloproteinase (pro-MMP)-2 via membrane type-MMP is a hallmark of human breast cancer cell lines that show increased invasiveness, suggesting that MMP-2 contributes to human breast cancer progression. To investigate this, we have stably transfected pro-MMP-2 into the human breast cancer cell line MDA-MB-231, which lacks MMP-2 expression but does express its cell surface activator, membrane type 1-MMP. Multiple clones were derived and shown to produce pro-MMP-2 and to activate it in response to concanavalin A. In vitro analysis showed that the pro-MMP-2-transfected clones exhibited an increased invasive potential in Boyden chamber and Matrigel outgrowth assays, compared with the parental cells or those transfected with vector only. When inoculated into the mammary fat pad of nude mice, each of the MMP-2-tranfected clones grew faster than each of the vector controls tested. After intracardiac inoculation into nude mice, pro-MMP-2-transfected clones showed a significant increase in the incidence of metastasis to brain, liver, bone, and kidney compared with the vector control clones but not lung. Increased tumor burden was seen in the primary site and in lung metastases, and a trend toward increased burden was seen in bone, however, no change was seen in brain, liver, or kidney. This data supports a role for MMP-2 in breast cancer progression, both in the growth of primary tumors and in their spread to distant organs. MMP-2 may be a useful target for breast cancer therapy when refinement of MMP inhibitors provides for MMP-specific agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ConA-induced cell surface activation of pro-matrix metalloproteinase-2 (pro-MMP-2) by MDA-MB-231 human breast cancer cells is apparently mediated by up-regulation of membrane type 1 MMP (MT1-MMP) through transcriptional and posttranscriptional mechanisms. Here, we have explored the respective roles of cell surface clustering and protein tyrosine phosphorylation in the ConA- induction effects. Treatment with succinyl-ConA, a variant lacking significant clusterability, partially stimulated MT1-MMP mRNA and protein levels but did not induce MMP-2 activation, suggesting that clustering contributes to the transcriptional regulation by ConA but appears to be critical for the nontranscriptional component. We further found that genistein, an inhibitor of tyrosine phosphorylation, blocked ConA-induced pro-MMP-2 activation and ConA-induced MT1-MMP mRNA level in a dose-dependent manner, implicating tyrosine phosphorylation in the transcriptional aspect. This was confirmed by the dose-dependent promotion of pro-MMP-2 activation by sodium orthovanadate in the presence of suboptimal concentrations of ConA (7.5 μg/ml), with optimal effects seen at 25 μg/g orthovanadate. Genistein did not inhibit the ConA potentiation of MMP-2 activation in MCF-7 cells, in which transfected MT1-MMP is driven by a heterologous promoter, supporting the major implication of phosphotyrosine in the transcriptional component of ConA regulation. These data describe a major signaling event upstream of MT1- MMP induction by ConA and set the stage for further analysis of the nontranscriptional component.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matrix Metalloproteinase-2 (MMP-2) is secreted as a zymogen, the activation of which has been associated with metastatic progression in human breast cancer (HBC). Concanavalin A (Con A) has been found to induce activation of MMP-2 in invasive HBC cell lines. Con A effects on the expression of mRNA for membrane-type matrix metalloproteinase (MT-MMP), a newly described cell surface-associated MMP, showed a close temporal correlation with induction of MMP-2 activation. It is surprising that MT-MMP mRNA is constitutively present in the uninduced MDA-MB-231 cell, despite a lack of MMP-2 activation. We have used actinomycin D to demonstrate a partial requirement for de novo gene expression in the induction of MMP-2 activation by Con A in MDA-MB-231 HBC cells. Furthermore, this transcriptional response to Con A appeared to require the continued presence of Con A for its manifestation. The nontranscriptional component of the Con A induction manifests rapidly, is quite substantial, and persists strongly despite actinomycin D abrogation of both constitutive and Con A-induced MT-MMP. Cycloheximide analyses suggest that protein synthesis may be involved in this rapid transcription-independent response. These studies suggest that Con A induces MMP-2-activation in part by up-regulation of MT-MMP expression but has a more complicated mode of action, involving additional nontranscriptional effects, which apparently require protein synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although tissue inhibitor of metalloproteinase-2 (TIMP-2) is known to be not only an inhibitor of matrix metalloproteinases (MMP) but also a cofactor for membrane-type 1 MMP (MT1-MMP)-mediated MMP-2 activation, it is still unclear how TIMP-2 regulates MMP-2 activation and cleavage of substrates by MT1-MMP. In the present study we examined the levels of cell-surface MT1-MMP, MMP-2 activation and cleavage of MT1-MMP substrates in 293T cells transfected with the MT1-MMP and TIMP-2 genes. Co-expression of TIMP-2 at an appropriate level increased the level of cell-surface MT1-MMP, both the TIMP-2-bound and free forms, and generated processed MMP-2 with gelatin-degrading activity. In contrast, MT1-MMP substrates testican-1 and syndecan-1 were cleaved by the cells expressing MT1-MMP, which was inhibited by TIMP-2 even at levels that stimulate MMP-2 activation. These results suggest that TIMP-2 environment determines MT1-MMP substrate choice between direct cleavage of its own substrates and MMP-2 activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Typical inductive power transfer (IPT) systems employ two power conversion stages to generate a high-frequency primary current from low-frequency utility supply. This paper proposes a matrix-converter-based IPT system, which employs high-speed SiC devices to facilitate the generation of high-frequency current through a single power conversion stage. The proposed matrix converter topology transforms a three-phase low-frequency voltage system to a high-frequency single-phase voltage, which, in turn, powers a series compensated IPT system. A comprehensive mathematical model is developed and power losses are evaluated to investigate the efficiency of the proposed converter topology. Theoretical results are presented with simulations, which are performed in MATLAB/Simulink, in comparison to a conventional two-stage converter. Experimental evident of a prototype IPT system is also presented to demonstrate the applicability of the proposed concept.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Each September since 1983 in the rural Shire of Ravensthorpe, Western Australia, volunteers collect samples of up to 700 wildfl ower species which are then displayed in the Ravensthorpe Senior Citizens Centre from 9.00 am to 4.00 pm daily over a two-week period. This chapter offers an ethnographic interpretation of this enduring annual event focusing on the 25th show held in 2007. The study contributes to understanding the complex and nuanced role of local wildflower shows in shaping and supporting rural senses of place and of community. Importantly, this particular type of festival, and more specifically this local instance, foregrounds a less-remarked aspect of festivals, namely the (re)production and celebration of place-specific knowledge through validations of, and interconnections between, scientific flower classification and emotive experience. This feature, encapsulated in Laurel Lamperd’s poem above, invites consideration of the ways in which local place knowledge and the simultaneous (re)production of ‘place’ are constituted by a complex layering of rational, objective ways of knowing and those which emphasize emotions, aesthetics and memories. This rural wildflower show not only mobilises both the rational and the emotional in ‘making sense of the world’ for local residents and for tourists, but also offers insights into the production of place as constituted in and through relations between humans and non-human life forms (Cloke & Jones, 2001; Conradson, 2005; see also Chapter 6).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background/Aims Biological and synthetic scaffolds play important roles in tissue engineering and are being developed towards human clinical applications. Based on previous work from our laboratory, we propose that extracellular matrices from skeletal muscle could be developed for adipose tissue engineering. Methods Extracellular matrices (Myogels) extracted from skeletal muscle of various species were assessed using biochemical assays including ELISA and Western blotting. Biofunctionality was assessed using an in vitro differentiation assay and a tissue engineering construct model in the rat. Results Myogels were successfully extracted from mice, rats, pigs and humans. Myogels contained significant levels of laminin α4- and α2-subunits and collagen I compared to Matrigel™, which contains laminin 1 (α1β1γ1) and collagen IV. Levels of growth factors such as fibroblast growth factor 2 were significantly higher than Matrigel, vascular endothelial growth factor-A levels were significantly lower and all other growth factors were comparable. Myogels reproducibly stimulated adipogenic differentiation of preadipocytes in vitro and the growth of adipose tissue in the rat. Conclusions We found Myogel induces adipocyte differentiation in vitroand shows strong adipogenic potential in vivo, inducing the growth of well-vascularised adipose tissue. Myogel offers an alternative for current support scaffolds in adipose tissue engineering, allowing the scaling up of animal models towards clinical adipose tissue engineering applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To investigate the role of matrix metalloproteinase 13 (MMP-13; collagenase 3) in osteoarthritis (OA). Methods OA was surgically induced in the knees of MMP-13-knockout mice and wild-type mice, and mice were compared. Histologic scoring of femoral and tibial cartilage aggrecan loss (0-3 scale), erosion (0-7 scale), and chondrocyte hypertrophy (0-1 scale), as well as osteophyte size (0-3 scale) and maturity (0-3 scale) was performed. Serial sections were stained for type X collagen and the MMP-generated aggrecan neoepitope DIPEN. Results Following surgery, aggrecan loss and cartilage erosion were more severe in the tibia than femur (P < 0.01) and tibial cartilage erosion increased with time (P < 0.05) in wild-type mice. Cartilaginous osteophytes were present at 4 weeks and underwent ossification, with size and maturity increasing by 8 weeks (P < 0.01). There was no difference between genotypes in aggrecan loss or cartilage erosion at 4 weeks. There was less tibial cartilage erosion in knockout mice than in wild-type mice at 8 weeks (P < 0.02). Cartilaginous osteophytes were larger in knockout mice at 4 weeks (P < 0.01), but by 8 weeks osteophyte maturity and size were no different from those in wild-type mice. Articular chondrocyte hypertrophy with positive type X collagen and DIPEN staining occurred in both wild-type and knockout mouse joints. Conclusion Our findings indicate that structural cartilage damage in a mouse model of OA is dependent on MMP-13 activity. Chondrocyte hypertrophy is not regulated by MMP-13 activity in this model and does not in itself lead to cartilage erosion. MMP-13 deficiency can inhibit cartilage erosion in the presence of aggrecan depletion, supporting the potential for therapeutic intervention in established OA with MMP-13 inhibitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of bovine interphotoreceptor matrix and conditioned medium from human Y-79 retinoblastoma cells by gelatin SDS-PAGE zymography reveals abundant activity of a 72-kDa M(r) gelatinase. The 72-kDa gelatinase from either source is inhibited by EDTA but not aprotinin or NEM, indicating that it is a metalloproteinase (MMP). The 72-kDa MMP is converted to a 62-kDa species with APMA treatment after gelatin sepharose affinity purification typical of previously described gelatinase MMP-2. The latent 72-kDa gelatinase from either bovine IPM or Y-79 media autoactivates without APMA in the presence of calcium and zinc after 72 hr at 37°C, producing a fully active mixture of proteinase species, 50 (48 in Y-79 medium), 38 and 35 kDa in size. The presence of inhibitory activity was examined in both whole bovine IPM and IPM fractions separated by SDS-PAGE. Whole IPM inhibited gelatinolytic activity of autoactivated Y-79-derived MMP in a dose-dependent manner. Inhibitory activities are observed in two protein fractions of 27-42 and 20-25 kDa. Western blots using antibodies to human tissue inhibitor of metalloproteinase 1 and 2 (TIMP-1 and -2) reveal the presence of two TIMP-1-like proteins at 21 and 29 kDa in inhibitory fractions of the bovine IPM. TIMP-2 was not detected in the inhibitory IPM fractions, consistent with the observed autoactivation of bovine IPM 72-kDa gelatinase. Potential roles for this IPM MMP-TIMP system include physiologic remodelling of the neural retina-RPE cell interface and digestion of shed rod outer segment as well as pathological processes such as retinal detachment, PE cell migration, neovascularization and tumor progression. Cultured Y-79 cells appear to be a good model for studying the production and regulation of this proteinase system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the avian model of myopia, retinal image degradation quickly leads to ocular enlargement. We now give evidence that regionally specific changes in ocular size are correlated with both biomechanical indices of scleral remodeling, e.g. hydration capacity and with biochemical changes in proteinase activities. The latter include a 72 kDa matrix metalloproteinase (putatively MMP-2), other gelatin-binding MMPs, an acid pH MMP and a serine protease. Specifically, we have found that increases in scleral hydrational capacity parallel increases in collagen degrading activities. Gelatin zymography reveals that eyes with 7 days of retinal image degradation have elevated levels (1.4-fold) of gelatinolytic activities at 72 and 67 kDa M(r) in equatorial and posterior pole regions of the sclera while, after 14 days of treatment, increases are no longer apparent. Lower M(r) zymographic activities at 50, 46 and 37 kDa M(r) are collectively increased in eyes treated for both 7 and 14 days (1.4- and 2.4-fold respectively) in the equator and posterior pole areas of enlarging eyes. Western blot analyses of scleral extracts with an antibody to human MMP-2 reveals immunoreactive bands at 65, 30 and 25 kDa. Zymograms incubated under slightly acidic conditions reveal that, in enlarging eyes, MMP activities at 25 and 28 kDa M(r) are increased in scleral equator and posterior pole (1.6- and 4.5-fold respectively). A TIMP-like protein is also identified in sclera and cornea by Western blot analysis. Finally, retinal-image degradation also increases (~2.6-fold) the activity of a 23.5 kDa serine proteinase in limbus, equator and posterior pole sclera that is inhibited by aprotinin and soybean trypsin inhibitor. Taken together, these results indicate that eye growth induced by retinal-image degradation involves increases in the activities of multiple scleral proteinases that could modify the biomechanical properties of scleral structural components and contribute to tissue remodeling and growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During invasion and metastasis, cancer cells interact closely with the extracellular matrix molecules by attachment, degradation, and migration. We demonstrated previously the local degradation of fluorescently labeled gelatin matrix by cancer cells at invasive membrane protrusions, called invadopodia. Using the newly developed quantitative fluorescence-activated cell sorting-phagocytosis assay and image analysis of localized degradation of fluorescently labeled matrix, we document here that degradation and site- specific removal of cross-linked gelatin matrix is correlated with the extent of phagocytosis in human breast cancer cells. A higher phagocytic capacity is generally associated with increasing invasiveness, documented in other invasion and motility assays as well. Gelatin phagocytosis is time and cell density dependent, and it is mediated by the actin cytoskeleton. Most of the intracellular gelatin is routed to actively acidified vesicles, as demonstrated by the fluorescent colocalization of gelatin with acidic vesicles, indicating the intracellular degradation of the phagocytosed matrix in lysosomes. We show here that normal intracellular routing is blocked after treatment with acidification inhibitors. In addition, the need for partial proteolytic degradation of the matrix prior to phagocytosis is demonstrated by the inhibition of gelatin phagocytosis with different serine and metalloproteinase inhibitors and its stimulation by conditioned medium containing the matrix metalloproteinases MMP-2 and MMP-9. Our results demonstrate that phagocytosis of extracellular matrix is an inherent feature of breast tumor cells that correlates with and may even directly contribute to their invasive capacity. This assay is useful for screening and evaluating potential anti-invasive agents because it is fast, reproducible, and versatile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The validity of fatigue protocols involving multi-joint movements, such as stepping, has yet to be clearly defined. Although surface electromyography can monitor the fatigue state of individual muscles, the effects of joint angle and velocity variation on signal parameters are well established. Therefore, the aims of this study were to i) describe sagittal hip and knee kinematics during repetitive stepping ii) identify periods of high inter-trial variability and iii) determine within-test reliability of hip and knee kinematic profiles. A group of healthy men (N = 15) ascended and descended from a knee-high platform wearing a weighted vest (10%BW) for 50 consecutive trials. The hip and knee underwent rapid flexion and extension during step ascent and descent. Variability of hip and knee velocity peaked between 20-40% of the ascent phase and 80-100% of the descent. Significant (p<0.05) reductions in joint range of motion and peak velocity during step ascent were observed, while peak flexion velocity increased during descent. Healthy individuals use complex hip and knee motion to negotiate a knee-high step with kinematic patterns varying across multiple repetitions. These findings have important implications for future studies intending to use repetitive stepping as a fatigue model for the knee extensors and flexors.