967 resultados para Oscillatory Marangoni-Convection


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a finite element numerical solution of free convection in a cavity with side walls maintained at constant but different temperatures. The predictions from the model and the method of solution were validated by comparison with the 'bench mark' solution and Vahl Davis' results and good agreement was found. The present model was used to obtain additional results over a wide range of Rayleigh number (10(3)-10(6)) and L/H ratios varying from 0.1 to 1.0. The predicted stream function patterns, temperature and velocity profiles as well as the mean Nusselt number were presented and discussed. (C) 2000 Elsevier B.V. Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Respiratory rates of individual workers of Camponotus rufipes Fabricius (Hymenoptera: Formicidae) were measured at 25-degrees-C and LD 12:12 h (lights on 06.00 hours), DL 12:12 h (lights on 18.00 hours), LL (850 lux) and DD (red light, 20-30 lux), using the micro-Warburg technique. Worker ants were collected from natural nest during the winter of 1987 in a woodland park in the region of Rio Claro, São Paulo, Brazil. The respiration of ants showed a circadian rhythm with acrophase ranging from 20 h 41 min to 01 h 18 min and from 10 h 32 min to 12 h 22 min at LD and DD, respectively. In constant darkness the rhythmometric variables were similar to those presented by ants kept at LD 12:12 h. Under constant light no circadian rhythm in the respiration rates was found. A reduction in the amplitude was observed, indicating an inhibitory effect of this light regime on the respiration process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: the aim of this study was to evaluate the biomechanical preparation of flattened root canals using the following systems: Endo-Eze AET stainless steel oscillatory instruments (Ultradent) and RaCe rotary NiTi instruments (FKG Dentaire). Materials and Methods: Twenty extracted human mandibular incisors were randomly assigned to two groups: Group I Instrumentation with oscillatory Endo-Eze AET files (oscillatory technique); Group 2 - Instrumentation with rotary NiTi RaCe files (rotary technique). The teeth were decoronated, had their apices and coronal openings sealed with sticky wax and were embedded in crystal-clear orthophtalic polyester resin. The roots were sectioned transversally with diamond discs at 10 mm (middle third) and 5 mm (apical third) from the apex and the segments were reassembled for instrumentation. The sections were photographed before and after root canal instrumentation and evaluated with respect to whether the original root canal shape was modified by instrumentation. To evaluate the differences in the root canal shape before and after biomechanical preparation, scores were given regarding the instruments touch on the intracanal walls. Results: In middle third of the root canals instrumented with the rotary system, there was a change in the original canal anatomy (p < 0.05), with formation of a protuberance in the mesiodistal direction. This protuberance did not occur when the oscillatory instrumentation was used. The oscillatory system had better results in the middle and apical thirds as evaluated by Dunn's multiple-comparison test (p > 0.05). Conclusion: Under the tested conditions, Endo-Eze oscillatory system yielded the instrumentation of all flattened oot canal walls, maintaining the canal original shape throughout the biomechanical preparation, and was more effective than RaCe rotary system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, an analysis of the natural convection flow caused by heat sources dissipating energy at a constant rate simulating electronic components mounted at the bottom surface of a cavity symmetrically cooled from the sides and insulated at the top is performed. This problem was studied numerically and experimentally for several aspect ratios (height/width), for different levels of dissipation in the sources, and for different side wall temperatures. Temperature and velocity fields were determined as well as the temperature variation along the surface where the sources are mounted and the average Nusselt number in the source surfaces. Numerical and experimental results were found to agree.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using the long-wavelength approximation, a system of coupled evolution equations for the bulk velocity and the surface perturbations of a Benard-Marangoni system is obtained. It includes nonlinearity, dispersion, and dissipation, and it can be interpreted as a dissipative generalization of the usual Boussinesq system of equations. As a particular case, a strictly dissipative version of the Boussinesq system is obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this manuscript we investigated experimentally the steady-state heat transfer to an important pseudoplastic fluid food, the soursop juice, flowing in laminar regime through circular and concentric annular ducts. The mean convection heat transfer coefficients, determined by measuring the bulk temperatures before and after the heating sections with constant temperatures of the tube walls, were used to correlate simple new empiric expressions to estimate the average Nusselt number in the thermal entrance of the considered geometries. In addition, the thermophysical properties of the tested fluid food, as well as the rheological behavior, being essential for the heat transfer analyses, were experimentally determined. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we examine an inverse heat convection problem of estimating unknown parameters of a parameterized variable boundary heat flux. The physical problem is a hydrodynamically developed, thermally developing, three-dimensional steady state laminar flow of a Newtonian fluid inside a circular sector duct, insulated in the flat walls and subject to unknown wall heat flux at the curved wall. Results are presented for polynomial and sinusoidal trial functions, and the unknown parameters as well as surface heat fluxes are determined. Depending on the nature of the flow, on the position of experimental points the inverse problem sometimes could not be solved. Therefore, an identification condition is defined to specify a condition under which the inverse problem can be solved. Once the parameters have been computed it is possible to obtain the statistical significance of the inverse problem solution. Therefore, approximate confidence bounds based on standard statistical linear procedure, for the estimated parameters, are analyzed and presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine the appearance of surface waves governed by Burgers and Korteweg-de Vries equations in a shallow viscous heated fluid. We consider waves triggered by a surface-tension variation induced by both temperature and concentration gradients. We also establish the range of parameters for which the above-mentioned equations appear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using the long-wave approximation, a system of coupled evolutions equations for the bulk velocity and the surface perturbations of a Bénard-Marangoni system is obtained. It includes nonlinearity, dispersion and dissipation, and it is interpreted as a dissipative generalization of the usual Boussinesq system of equations. Then, by considering that the Marangoni number is near the critical value M = -12, we show that the modulation of the Boussinesq waves is described by a perturbed Nonlinear Schrödinger Equation, and we study the conditions under which a Benjamin-Feir instability could eventually set in. The results give sufficient conditions for stability, but are inconclusive about the existence or not of a Benjamin-Feir instability in the long-wave limit. © 1995.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work considers a problem of interest in several technological applications such as the thermal control of electronic equipment. It is also important to study the heat transfer performance of these components under off-normal conditions, such as during failure of cooling fans. The effect of natural convection on the flow and heat transfer in a cavity with two flush mounted heat sources on the left vertical wall, simulating electronic components, is studied numerically and experimentally. The influence of the power distribution, spacing between the heat sources and cavity aspect ratio have been investigated. An analysis of the average Nusselt number of the two heat sources was performed to investigate the behavior of the heat transfer coefficients. The results obtained numerically and experimentally, after an error analysis, showed a good agreement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We model the heterogeneously catalyzed oxidation of CO over a Pt surface. A phase diagram analysis is used to probe the several steady state regimes and their stability. We incorporate an experimentally observed 'slow' sub-oxide kinetic step, thereby generalizing a previously presented model. In agreement with experimental data, stable, oscillatory and quasi-chaotic regimes are obtained. Furthermore, the inclusion of the sub-oxide step yields a relaxation oscillation regime. © 1998 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical study of the non-oscillatory reheating mechanism in a quintessential inflation context shows that high reheating temperature can be achieved compared with the usual reheating mechanism in which particles are produced gravitationally. We find that even for a very small coupling between the inflaton field and a massless scalar field, the non-oscillatory reheating production of particles dominates over the gravitational production mechanism. © 2004 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laminar-forced convection inside tubes of various cross-section shapes is of interest in the design of a low Reynolds number heat exchanger apparatus. Heat transfer to thermally developing, hydrodynamically developed forced convection inside tubes of simple geometries such as a circular tube, parallel plate, or annular duct has been well studied in the literature and documented in various books, but for elliptical duct there are not much work done. The main assumptions used in this work are a non-Newtonian fluid, laminar flow, constant physical properties, and negligible axial heat diffusion (high Peclet number). Most of the previous research in elliptical ducts deal mainly with aspects of fully developed laminar flow forced convection, such as velocity profile, maximum velocity, pressure drop, and heat transfer quantities. In this work, we examine heat transfer in a hydrodynamically developed, thermally developing laminar forced convection flow of fluid inside an elliptical tube under a second kind of a boundary condition. To solve the thermally developing problem, we use the generalized integral transform technique (GITT), also known as Sturm-Liouville transform. Actually, such an integral transform is a generalization of the finite Fourier transform, where the sine and cosine functions are replaced by more general sets of orthogonal functions. The axes are algebraically transformed from the Cartesian coordinate system to the elliptical coordinate system in order to avoid the irregular shape of the elliptical duct wall. The GITT is then applied to transform and solve the problem and to obtain the once unknown temperature field. Afterward, it is possible to compute and present the quantities of practical interest, such as the bulk fluid temperature, the local Nusselt number, and the average Nusselt number for various cross-section aspect ratios.