870 resultados para Orthogonal chirp division multiplexing (OCDM)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Communicating at a high data rate through the ocean is challenging. Such communications must be acoustic in order to travel long distances. The underwater acoustic channel has a long delay spread, which makes orthogonal frequency division multiplexing (OFDM) an attractive communication scheme. However, the underwater acoustic channel is highly dynamic, which has the potential to introduce significant inter-carrier interference (ICI). This thesis explores a number of means for mitigating ICI in such communication systems. One method that is explored is directly adapted linear turbo ICI cancellation. This scheme uses linear filters in an iterative structure to cancel the interference. Also explored is on-off keyed (OOK) OFDM, which is a signal designed to avoid ICI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electro-optical transceivers can be implemented employing all-analog signal processing in order to achieve low values of power consumption and latency. This paper shows that the spectral efficiency of such solutions can be increased by combining orthogonal multicarrier techniques and off-the-shelf microwave components. A real-time 108-Gbit/s experiment was performed emulating a wavelength division multiplexing (WDM) system composed of five optical channels. The optical carriers were provided by an externally injected gain switched optical frequency comb. Each optical channel transmitted a 21.6-Gbit/s orthogonal subcarrier multiplexing (SCM) signal that was modulated and demodulated in the electrical domain without the requirement for digital signal processing. The net data rate remained higher than 100 Gbit/s after taking into account forward error correction overheads. The use of orthogonally overlapping subchannels achieves an unprecedented spectral efficiency in all-analog real-time broadband WDM/SCM links.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detailed investigations of the transmission performance of adaptively modulated optical orthogonal frequency division multiplexed (AMOOFDM) signals converted using reflective semiconductor optical amplifiers (RSOAs) are undertaken over intensity-modulation and direct-detection (IMDD) single-mode fiber (SMF) transmission systems for WDM-PONs. The theoretical RSOA model adopted for modulating the AMOOFDM signals is experimentally verified rigorously in the aforementioned transmission systems incorporating recently developed real-time end-to-end OOFDM transceivers. Extensive performance comparisons are also made between RSOA and SOA intensity modulators. Optimum RSOA operating conditions are identified, which are independent of RSOA rear-facet reflectivity and very similar to those corresponding to SOAs. Under the identified optimum operating conditions, the RSOA and SOA intensity modulators support the identical AMOOFDM transmission performance of 30Gb/s over 60km SMFs. Under low-cost optical component-enabled practical operating conditions, RSOA intensity modulators with rear-facet reflectivity values of >0.3 outperform considerably SOA intensity modulators in transmission performance, which decreases significantly with reducing RSOA rear-facet reflectivity and optical input power. In addition, results also show that use can be made of the RSOA/SOA intensity modulation-induced negative frequency chirp to improve the AMOOFDM transmission performance in IMDD SMF systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wavelength tunable electro-absorption modulated distributed Bragg reflector lasers (TEMLs) are promising light source in dense wavelength division multiplexing (DWDM) optical fiber communication system due to high modulation speed, small chirp, low drive voltage, compactness and fast wavelength tuning ability. Thus, increased the transmission capacity, the functionality and the flexibility are provided. Materials with bandgap difference as large as 250nm have been integrated on the same wafer by a combined technique of selective area growth (SAG) and quantum well intermixing (QWI), which supplies a flexible and controllable platform for the need of photonic integrated circuits (PIC). A TEML has been fabricated by this technique for the first time. The component has superior characteristics as following: threshold current of 37mA, output power of 3.5mW at 100mA injection and 0V modulator bias voltage, extinction ratio of more than 20 dB with modulator reverse voltage from 0V to 2V when coupled into a single mode fiber, and wavelength tuning range of 4.4nm covering 6 100-GHz WDM channels. A clearly open eye diagram is observed when the integrated EAM is driven with a 10-Gb/s electrical NRZ signal. A good transmission characteristic is exhibited with power penalties less than 2.2 dB at a bit error ratio (BER) of 10(-10) after 44.4 km standard fiber transmission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the fact that a metro network market is very cost sensitive, direct modulated schemes appear attractive. In this paper a CWDM (Coarse Wavelength Division Multiplexing) system is studied in detail by means of an Optical Communication System Design Software; a detailed study of the modulated current shape (exponential, sine and gaussian) for 2.5 Gb/s CWDM Metropolitan Area Networks is performed to evaluate its tolerance to linear impairments such as signal-to-noise-ratio degradation and dispersion. Point-to-point links are investigated and optimum design parameters are obtained. Through extensive sets of simulation results, it is shown that some of these shape pulses are more tolerant to dispersion when compared with conventional gaussian shape pulses. In order to achieve a low Bit Error Rate (BER), different types of optical transmitters are considered including strongly adiabatic and transient chirp dominated Directly Modulated Lasers (DMLs). We have used fibers with different dispersion characteristics, showing that the system performance depends, strongly, on the chosen DML?fiber couple.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A three-node optical time-division multiplexing (OTDM) network is demonstrated that utilizes electroabsorption (EA) modulators as the core elements. Each node is self contained and performs its own clock recovery and synchronization. “Drop and insert” functionality is demonstrated for the first time with an EA modulator by completely removing a 10-Gb/s channel from a 40-Gb/s OTDM data stream. A different 10-Gb/s channel was subsequently inserted into the vacant time slot. Clock recovery is achieved by using an EA modulator in a novel bidirectional configuration. Bit-error-rate (BER) measurements are presented for each of the 10-Gb/s OTDM channels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a 2R regeneration scheme based on a nonlinear optical loop mirror and optical filtering. The feasibility of wavelength-division multiplexing operation at 40 Gbit/s is numerically demonstrated. We examine the characteristics of one-step regeneration and discuss networking applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A three-node optical time-division multiplexing (OTDM) network is demonstrated that utilizes electroabsorption (EA) modulators as the core elements. Each node is self contained and performs its own clock recovery and synchronization. "Drop and insert" functionality is demonstrated for the first time with an EA modulator by completely removing a 10-Gb/s channel from a 40-Gb/s OTDM data stream. A different 10-Gb/s channel was subsequently inserted into the vacant time slot. Clock recovery is achieved by using an EA modulator in a novel bidirectional configuration. Bit-error-rate (BER) measurements are presented for each of the 10-Gb/s OTDM channels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explores experimentally the impairments in performance that are generated when multiple single-sideband (SSB) subcarrier multiplexing (SCM) signals are closely allocated in frequency to establish a spectrally efficient wavelength division multiplexing (WDM) link. The performance of cost-effective SSB WDM/ SCM implementations, without optical filters in the transmitter, presents a strong dependency on the imperfect sideband suppression ratio that can be directly achieved with the electro-optical modulator. A direct detected broadband multichannel SCM link composed of a state-of-the-art optical IQ modulator and five quadrature phase-shift keyed (QPSK) subcarriers per optical channel is presented, showing that a suppression ratio of 20 dB obtained directly with the modulator produced a penalty of 2 dB in overall performance, due to interference between adjacent optical channels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Owing to the limited cell size of eNodeB (eNB), the relay node has emerged as an attractive solution for the long-term evolution (LTE) system. The nonlinear limit of the alternative method to multipleinput and multiple-output (MIMO) based on frequency division multiplexing (FDM) for orthogonal FDM (OFDM) is analysed over varying transmission spans. In this reported work, it is shown that the degradation pattern over the linear, intermixing and nonlinear propagation regions is consistent for the 2 and the 2.6 GHz bands. The proposed bands experienced a linear increase in the error vector magnitude (EVM) for both the linear and the nonlinear regions proportional to the increasing transmission spans. In addition, an optical launch power between -2 and 2 dBm achieved a significantly lower EVM than the LTE limit of 8% for the 10-60 km spans. © The Institution of Engineering and Technology 2014.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data centre connections can greatly benefit from parallel transmission channels on one multimode fibre (MMF). Shortwave wavelength division multiplexing (SWDM) achieves parallel transmission through spectral multiplexing. Furthermore, MMFs offer a spatial dimension that should be exploited to increase parallel transmission, albeit in a cost-effective way. In this paper, it is shown that SWDM and spatial multiplexing can be combined in intensity modulation and direct detection MMF transmission systems that use selective offset excitation and mode-selective spatial filtering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an efficient low-complexity clipping noise compensation scheme for PAR reduced orthogonal frequency division multiple access (OFDMA) systems. Conventional clipping noise compensation schemes proposed for OFDM systems are decision directed schemes which use demodulated data symbols. Thus these schemes fail to deliver expected performance in OFDMA systems where multiple users share a single OFDM symbol and a specific user may only know his/her own modulation scheme. The proposed clipping noise estimation and compensation scheme does not require the knowledge of the demodulated symbols of the other users, making it very promising for OFDMA systems. It uses the equalized output and the reserved tones to reconstruct the signal by compensating the clipping noise. Simulation results show that the proposed scheme can significantly improve the system performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this chapter we propose clipping with amplitude and phase corrections to reduce the peak-to-average power ratio (PAR) of orthogonal frequency division multiplexed (OFDM) signals in high-speed wireless local area networks defined in IEEE 802.11a physical layer. The proposed techniques can be implemented with a small modification at the transmitter and the receiver remains standard compliant. PAR reduction as much as 4dB can be achieved by selecting a suitable clipping ratio and a correction factor depending on the constellation used. Out of band noise (OBN) is also reduced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In uplink orthogonal frequency division multiple access (OFDMA), large timing offsets (TO) and/or carrier frequency offsets (CFO) of other users with respect to a desired user can cause significant multiuser interference (MUI). In this letter, we analytically characterize the degradation in the average output signal-to-interference ratio (SIR) due to the combined effect of both TOs as well as CFOs in uplink OFDMA. Specifically, we derive closed-form expressions for the average SIR at the DFT output in the presence of large CFOs and TOs. The analyticalexpressions derived for the signal and various interference terms at the DFT output are used to devise an interference cancelling receiver to mitigate the effect of CFO/TO-induced interferences.