992 resultados para Optimum-Path Forest classifier
Resumo:
Background: Malaria is a major public health burden in the tropics with the potential to significantly increase in response to climate change. Analyses of data from the recent past can elucidate how short-term variations in weather factors affect malaria transmission. This study explored the impact of climate variability on the transmission of malaria in the tropical rain forest area of Mengla County, south-west China. Methods: Ecological time-series analysis was performed on data collected between 1971 and 1999. Auto-regressive integrated moving average (ARIMA) models were used to evaluate the relationship between weather factors and malaria incidence. Results: At the time scale of months, the predictors for malaria incidence included: minimum temperature, maximum temperature, and fog day frequency. The effect of minimum temperature on malaria incidence was greater in the cool months than in the hot months. The fog day frequency in October had a positive effect on malaria incidence in May of the following year. At the time scale of years, the annual fog day frequency was the only weather predictor of the annual incidence of malaria. Conclusion: Fog day frequency was for the first time found to be a predictor of malaria incidence in a rain forest area. The one-year delayed effect of fog on malaria transmission may involve providing water input and maintaining aquatic breeding sites for mosquitoes in vulnerable times when there is little rainfall in the 6-month dry seasons. These findings should be considered in the prediction of future patterns of malaria for similar tropical rain forest areas worldwide.
Resumo:
Barmah Forest virus (BFV) disease is one of the most widespread mosquito-borne diseases in Australia. The number of outbreaks and the incidence rate of BFV in Australia have attracted growing concerns about the spatio-temporal complexity and underlying risk factors of BFV disease. A large number of notifications has been recorded continuously in Queensland since 1992. Yet, little is known about the spatial and temporal characteristics of the disease. I aim to use notification data to better understand the effects of climatic, demographic, socio-economic and ecological risk factors on the spatial epidemiology of BFV disease transmission, develop predictive risk models and forecast future disease risks under climate change scenarios. Computerised data files of daily notifications of BFV disease and climatic variables in Queensland during 1992-2008 were obtained from Queensland Health and Australian Bureau of Meteorology, respectively. Projections on climate data for years 2025, 2050 and 2100 were obtained from Council of Scientific Industrial Research Organisation. Data on socio-economic, demographic and ecological factors were also obtained from relevant government departments as follows: 1) socio-economic and demographic data from Australian Bureau of Statistics; 2) wetlands data from Department of Environment and Resource Management and 3) tidal readings from Queensland Department of Transport and Main roads. Disease notifications were geocoded and spatial and temporal patterns of disease were investigated using geostatistics. Visualisation of BFV disease incidence rates through mapping reveals the presence of substantial spatio-temporal variation at statistical local areas (SLA) over time. Results reveal high incidence rates of BFV disease along coastal areas compared to the whole area of Queensland. A Mantel-Haenszel Chi-square analysis for trend reveals a statistically significant relationship between BFV disease incidence rates and age groups (ƒÓ2 = 7587, p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. A cluster analysis was used to detect the hot spots/clusters of BFV disease at a SLA level. Most likely spatial and space-time clusters are detected at the same locations across coastal Queensland (p<0.05). The study demonstrates heterogeneity of disease risk at a SLA level and reveals the spatial and temporal clustering of BFV disease in Queensland. Discriminant analysis was employed to establish a link between wetland classes, climate zones and BFV disease. This is because the importance of wetlands in the transmission of BFV disease remains unclear. The multivariable discriminant modelling analyses demonstrate that wetland types of saline 1, riverine and saline tidal influence were the most significant risk factors for BFV disease in all climate and buffer zones, while lacustrine, palustrine, estuarine and saline 2 and saline 3 wetlands were less important. The model accuracies were 76%, 98% and 100% for BFV risk in subtropical, tropical and temperate climate zones, respectively. This study demonstrates that BFV disease risk varied with wetland class and climate zone. The study suggests that wetlands may act as potential breeding habitats for BFV vectors. Multivariable spatial regression models were applied to assess the impact of spatial climatic, socio-economic and tidal factors on the BFV disease in Queensland. Spatial regression models were developed to account for spatial effects. Spatial regression models generated superior estimates over a traditional regression model. In the spatial regression models, BFV disease incidence shows an inverse relationship with minimum temperature, low tide and distance to coast, and positive relationship with rainfall in coastal areas whereas in whole Queensland the disease shows an inverse relationship with minimum temperature and high tide and positive relationship with rainfall. This study determines the most significant spatial risk factors for BFV disease across Queensland. Empirical models were developed to forecast the future risk of BFV disease outbreaks in coastal Queensland using existing climatic, socio-economic and tidal conditions under climate change scenarios. Logistic regression models were developed using BFV disease outbreak data for the existing period (2000-2008). The most parsimonious model had high sensitivity, specificity and accuracy and this model was used to estimate and forecast BFV disease outbreaks for years 2025, 2050 and 2100 under climate change scenarios for Australia. Important contributions arising from this research are that: (i) it is innovative to identify high-risk coastal areas by creating buffers based on grid-centroid and the use of fine-grained spatial units, i.e., mesh blocks; (ii) a spatial regression method was used to account for spatial dependence and heterogeneity of data in the study area; (iii) it determined a range of potential spatial risk factors for BFV disease; and (iv) it predicted the future risk of BFV disease outbreaks under climate change scenarios in Queensland, Australia. In conclusion, the thesis demonstrates that the distribution of BFV disease exhibits a distinct spatial and temporal variation. Such variation is influenced by a range of spatial risk factors including climatic, demographic, socio-economic, ecological and tidal variables. The thesis demonstrates that spatial regression method can be applied to better understand the transmission dynamics of BFV disease and its risk factors. The research findings show that disease notification data can be integrated with multi-factorial risk factor data to develop build-up models and forecast future potential disease risks under climate change scenarios. This thesis may have implications in BFV disease control and prevention programs in Queensland.
Resumo:
Vehicular Ad-hoc Networks (VANET) have different characteristics compared to other mobile ad-hoc networks. The dynamic nature of the vehicles which act as routers and clients are connected with unreliable radio links and Routing becomes a complex problem. First we propose CO-GPSR (Cooperative GPSR), an extension of the traditional GPSR (Greedy Perimeter Stateless Routing) which uses relay nodes which exploit radio path diversity in a vehicular network to increase routing performance. Next we formulate a Multi-objective decision making problem to select optimum packet relaying nodes to increase the routing performance further. We use cross layer information for the optimization process. We evaluate the routing performance more comprehensively using realistic vehicular traces and a Nakagami fading propagation model optimized for highway scenarios in VANETs. Our results show that when Multi-objective decision making is used for cross layer optimization of routing a 70% performance increment can be obtained for low vehicle densities on average, which is a two fold increase compared to the single criteria maximization approach.
Resumo:
Problems with charity law jurisprudence persist. The difficulties arose in the 20th century and are fundamental to the way the doctrine is presently theorised. They grew out of the approach taken in Pemsel’s Case to the categorisation of the ‘spirit and intendment’ of the Preamble to the Statute of Charitable Uses. Recent statutory reforms, such as the Charities Act 2006 (Eng&W), have compounded the underlying problems rather than resolving them. This paper aims to stimulate thinking about a new foundation for charity jurisprudence – while the approach may seem radical, the paper argues that these new foundations can be discerned underlying the current jurisprudence. The difficulties can be overcome by rediscovering the underlying jurisprudence which is disregarded in the current approach to categorisation. Giving voice, in contemporary language, to that foundational jurisprudence, this paper provides a way out of the current problems. It also provides an alternative way of conceptualising the doctrine of charitable purpose to guide reform.
Resumo:
This book identifies the fundamental legal principles and the governance requirements of sustainable forest management. An analytical model for assessing forest regulation is created which identifies the doctrinal concepts that underpin forest regulation (justice, property, sovereignty and governance). It also highlights the dominant public international institutions involved in forest regulation (UNFF, UNFCCC and WB) which is followed by analysis of non-state international forest regulation (forest certification and ecosystem markets). The book concludes by making a number of practical recommendations for reform of global forest governance arrangements and suggested reforms for individual international forest institutions.
Resumo:
The aim of this paper is to implement a Game-Theory based offline mission path planner for aerial inspection tasks of large linear infrastructures. Like most real-world optimisation problems, mission path planning involves a number of objectives which ideally should be minimised simultaneously. The goal of this work is then to develop a Multi-Objective (MO) optimisation tool able to provide a set of optimal solutions for the inspection task, given the environment data, the mission requirements and the definition of the objectives to minimise. Results indicate the robustness and capability of the method to find the trade-off between the Pareto-optimal solutions.
Resumo:
This paper presents a novel evolutionary computation approach to three-dimensional path planning for unmanned aerial vehicles (UAVs) with tactical and kinematic constraints. A genetic algorithm (GA) is modified and extended for path planning. Two GAs are seeded at the initial and final positions with a common objective to minimise their distance apart under given UAV constraints. This is accomplished by the synchronous optimisation of subsequent control vectors. The proposed evolutionary computation approach is called synchronous genetic algorithm (SGA). The sequence of control vectors generated by the SGA constitutes to a near-optimal path plan. The resulting path plan exhibits no discontinuity when transitioning from curve to straight trajectories. Experiments and results show that the paths generated by the SGA are within 2% of the optimal solution. Such a path planner when implemented on a hardware accelerator, such as field programmable gate array chips, can be used in the UAV as on-board replanner, as well as in ground station systems for assisting in high precision planning and modelling of mission scenarios.
Resumo:
Background subtraction is a fundamental low-level processing task in numerous computer vision applications. The vast majority of algorithms process images on a pixel-by-pixel basis, where an independent decision is made for each pixel. A general limitation of such processing is that rich contextual information is not taken into account. We propose a block-based method capable of dealing with noise, illumination variations, and dynamic backgrounds, while still obtaining smooth contours of foreground objects. Specifically, image sequences are analyzed on an overlapping block-by-block basis. A low-dimensional texture descriptor obtained from each block is passed through an adaptive classifier cascade, where each stage handles a distinct problem. A probabilistic foreground mask generation approach then exploits block overlaps to integrate interim block-level decisions into final pixel-level foreground segmentation. Unlike many pixel-based methods, ad-hoc postprocessing of foreground masks is not required. Experiments on the difficult Wallflower and I2R datasets show that the proposed approach obtains on average better results (both qualitatively and quantitatively) than several prominent methods. We furthermore propose the use of tracking performance as an unbiased approach for assessing the practical usefulness of foreground segmentation methods, and show that the proposed approach leads to considerable improvements in tracking accuracy on the CAVIAR dataset.
Resumo:
Ocean gliders constitute an important advance in the highly demanding ocean monitoring scenario. Their effciency, endurance and increasing robustness make these vehicles an ideal observing platform for many long term oceanographic applications. However, they have proved to be also useful in the opportunis-tic short term characterization of dynamic structures. Among these, mesoscale eddies are of particular interest due to the relevance they have in many oceano-graphic processes.
Resumo:
Many state of the art vision-based Simultaneous Localisation And Mapping (SLAM) and place recognition systems compute the salience of visual features in their environment. As computing salience can be problematic in radically changing environments new low resolution feature-less systems have been introduced, such as SeqSLAM, all of which consider the whole image. In this paper, we implement a supervised classifier system (UCS) to learn the salience of image regions for place recognition by feature-less systems. SeqSLAM only slightly benefits from the results of training, on the challenging real world Eynsham dataset, as it already appears to filter less useful regions of a panoramic image. However, when recognition is limited to specific image regions performance improves by more than an order of magnitude by utilising the learnt image region saliency. We then investigate whether the region salience generated from the Eynsham dataset generalizes to another car-based dataset using a perspective camera. The results suggest the general applicability of an image region salience mask for optimizing route-based navigation applications.
Resumo:
The international climate change regime has the potential to increase revenue available for forest restoration projects in Commonwealth nations. There are three mechanisms which could be used to fund forest projects aimed at forest conservation, forest restoration and sustainable forest management. The first forest funding opportunity arises under the clean development mechanism, a flexibility mechanism of the Kyoto Protocol. The clean development mechanism allows Annex I parties (industrialised nations) to invest in emission reduction activities in non-Annex 1 (developing countries) and the establishment of forest sinks is an eligible clean development mechanism activity. Secondly, parties to the Kyoto Protocol are able to include sustainable forest management activities in their national carbon accounting. The international rules concerning this are called the Land-Use, Land-Use Change and Forestry Guidelines. Thirdly, it is anticipated that at the upcoming Copenhagen negotiations that a Reduced Emissions from Deforestation and Degradation (REDD) instrument will be created. This will provide a direct funding mechanism for those developing countries with tropical forests. Payments made under a REDD arrangement will be based upon the developing country with tropical forest cover agreeing to protect and conserve a designated forest estate. These three funding options available under the international climate change regime demonstrate that there is potential for forest finance within the regime. These opportunities are however hindered by a number of technical and policy barriers which prevent the ability of the regime to significantly increase funding for forest projects. There are two types of carbon markets, compliance carbon markets (Kyoto based) and voluntary carbon markets. Voluntary carbon markets are more flexible then compliance markets and as such offer potential to increase revenue available for sustainable forest projects.
Resumo:
One of the ways in which indigenous communities seek justice is through the formal recognition of their sovereign rights to land. Such recognition allows indigenous groups to maintain a physical and spiritual connection with their land and continue customary management of their land. Indigenous groups world over face significant hurdles in getting their customary rights to land recognized by legal systems. One of the main difficulties for indigenous groups in claiming customary land rights is the existence of a range of conflicting legal entitlements attaching to the land in question. In Australia, similar to New Zealand and Canada legal recognition to customary land is recognized through a grant of native title rights or through the establishment of land use agreement. In other jurisdictions such as Indonesia and Papua New Guinea a form of customary land title has been preserved and is recognized by the legal system. The implementation of REDD+ and other forms of forest carbon investment activities compounds the already complex arrangements surrounding legal recognition of customary land rights. Free, prior and informed consent of indigenous groups is essential for forest carbon investment on customary land. The attainment of such consent in practice remains challenging due to the number of conflicting interests often associated with forested land. This paper examines Australia’s experience in recongising indigenous land rights under its International Forest Carbon Initiative and under its domestic Carbon Credits (Carbon Farming Initiative) Act (Australia) 2011. Australia’s International Forest Carbon initiative has a budget of $273 million dollars. In 2008 the governments of Australia and Indonesia signed the Indonesia-Australia Forest Carbon Partnership Agreement. This paper will examine the indigenous land tenure and justice lessons learned from the implementation of the Kalimantan Forest and Climate Partnership (KFCP). The KFCP is $30 million dollar project taking place over 120,000 hectares of degraded and forested peatland in Central Kalimantan, Indonesia. The KFCP project site contains seven villages of the Dayak Ngdu indigenous people. In 2011 Australia established a domestic Forest Carbon Initiative, which seeks to provide new economic opportunities for farmers, forest growers and indigenous landholders while helping the environmental by reducing carbon pollution. This paper will explore the manner in which indigenous people are able to participate within these scheme noting the limits and opportunities in deriving co-benefits for indigenous people in Australia under this scheme.
Resumo:
Barmah Forest virus (BFV) disease is the second most common mosquito-borne disease in Australia, but the linkages of the wetlands and climate zones with BFV transmission remain unclear. We aimed to examine the relationship between the wetlands, climate zones and BFV risk in Queensland, Australia. Data on the wetlands, climate zones, population and BFV cases for the period 1992 to 2008 were obtained from relevant government agencies. BFV risk was grouped as low-, medium- and high-level based on BFV incidence percentiles. The buffer zones around each BFV case were made using 1, 5, 10, 15, 20, 25 and 50 km distances. We performed a discriminant analysis to determine the differences between wetland classes and BFV risk within each climate zone. The discriminant analyses show that saline 1, riverine and saline tidal influence were the most significant contributors to BFV risk in all climate and buffer zones, while lacustrine, palustrine, estuarine and saline 2 and saline 3 wetlands were less important. These models had classification accuracies of 76%, 98% and 100% for BFV risk in subtropical, tropical and temperate climate zones, respectively. This study demonstrates that BFV risk varies with wetland class and climate zone. The discriminant analysis is a useful tool to quantify the links between wetlands, climate zones and BFV risk.
Resumo:
The effects of small changes in flight-path parameters (primary and secondary flight paths, detector angles), and of displacement of the sample along the beam axis away from its ideal position, are examined for an inelastic time-of-flight (TOF) neutron spectrometer, emphasising the deep-inelastic regime. The aim was to develop a rational basis for deciding what measured shifts in the positions of spectral peaks could be regarded as reliable in the light of the uncertainties in the calibrated flight-path parameters. Uncertainty in the length of the primary or secondary flight path has the least effect on the positions of the peaks of H, D and He, which are dominated by the accuracy of the calibration of the detector angles. This aspect of the calibration of a TOF spectrometer therefore demands close attention to achieve reliable outcomes where the position of the peaks is of significant scientific interest and is discussed in detail. The corresponding sensitivities of the position of peak of the Compton profile, J(y), to flight-path parameters and sample position are also examined, focusing on the comparability across experiments of results for H, D and He. We show that positioning the sample to within a few mm of the ideal position is required to ensure good comparability between experiments if data from detectors at high forward angles are to be reliably interpreted.
Resumo:
A big challenge for classification on text is the noisy of text data. It makes classification quality low. Many classification process can be divided into two sequential steps scoring and threshold setting (thresholding). Therefore to deal with noisy data problem, it is important to describe positive feature effectively scoring and to set a suitable threshold. Most existing text classifiers do not concentrate on these two jobs. In this paper, we propose a novel text classifier with pattern-based scoring that describe positive feature effectively, followed by threshold setting. The thresholding is based on score of training set, make it is simple to implement in other scoring methods. Experiment shows that our pattern-based classifier is promising.