969 resultados para Optimized using


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structurally and sequence-wise, the Hsp110s belong to a subfamily of the Hsp70 chaperones. Like the classical Hsp70s, members of the Hsp110 subfamily can bind misfolding polypeptides and hydrolyze ATP. However, they apparently act as a mere subordinate nucleotide exchange factors, regulating the ability of Hsp70 to hydrolyze ATP and convert stable protein aggregates into native proteins. Using stably misfolded and aggregated polypeptides as substrates in optimized in vitro chaperone assays, we show that the human cytosolic Hsp110s (HSPH1 and HSPH2) are bona fide chaperones on their own that collaborate with Hsp40 (DNAJA1 and DNAJB1) to hydrolyze ATP and unfold and thus convert stable misfolded polypeptides into natively refolded proteins. Moreover, equimolar Hsp70 (HSPA1A) and Hsp110 (HSPH1) formed a powerful molecular machinery that optimally reactivated stable luciferase aggregates in an ATP- and DNAJA1-dependent manner, in a disaggregation mechanism whereby the two paralogous chaperones alternatively activate the release of bound unfolded polypeptide substrates from one another, leading to native protein refolding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary Cell therapy has emerged as a strategy for the treatment of various human diseases. Cells can be transplanted considering their morphological and functional properties to restore a tissue damage, as represented by blood transfusion, bone marrow or pancreatic islet cells transplantation. With the advent of the gene therapy, cells also were used as biological supports for the production of therapeutic molecules that can act either locally or at distance. This strategy represents the basis of ex vivo gene therapy characterized by the removal of cells from an organism, their genetic modification and their implantation into the same or another individual in a physiologically suitable location. The tissue or biological function damage dictates the type of cells chosen for implantation and the required function of the implanted cells. The general aim of this work was to develop an ex vivo gene therapy approach for the secretion of erythropoietin (Epo) in patients suffering from Epo-responsive anemia, thus extending to humans, studies previously performed with mouse cells transplanted in mice and rats. Considering the potential clinical application, allogeneic primary human cells were chosen for practical and safety reasons. In contrast to autologous cells, the use of allogeneic cells allows to characterize a cell lineage that can be further transplanted in many individuals. Furthermore allogeneic cells avoid the potential risk of zoonosis encountered with xenogeneic cells. Accordingly, the immune reaction against this allogeneic source was prevented by cell macro- encapsulation that prevents cell-to-cell contact with the host immune system and allows to easy retrieve the implanted device. The first step consisted in testing the survival of various human primary cells that were encapsulated and implanted for one month in the subcutaneous tissue of immunocompetent and naturally or therapeutically immunodepressed mice, assuming that xenogeneic applications constitute a stringent and representative screening before human transplantation. A fibroblast lineage from the foreskin of a young donor, DARC 3.1 cells, showed the highest mean survival score. We have then performed studies to optimize the manufacturing procedures of the encapsulation device for successful engraftment. The development of calcifications on the polyvinyl alcohol (PVA) matrix serving as a scaffold for enclosed cells into the hollow fiber devices was reported after one month in vivo. Various parameters, including matrix rinsing solutions, batches of PVA and cell lineages were assessed for their respective role in the development of the phenomenon. We observed that the calcifications could be totally prevented by using ultra-pure sterile water instead of phosphate buffer saline solution in the rinsing procedure of the PVA matrix. Moreover, a higher lactate dehydrogenase activity of the cells was found to decrease calcium depositions due to more acidic microenvironment, inhibiting the calcium precipitation. After the selection of the appropriate cell lineage and the optimization of encapsulation conditions, a retroviral-based approach was applied to DARC 3.1 fibroblasts for the transduction of the human Epo cDNA. Various modifications of the retroviral vector and the infection conditions were performed to obtain clinically relevant levels of human Epo. The insertion of a post-transcriptional regulatory element from the woodchuck hepatitis virus as well as of a Kozak consensus sequence led to a 7.5-fold increase in transgene expression. Human Epo production was further optimized by increasing the multiplicity of infection and by selecting high producer cells allowing to reach 200 IU hEpo/10E6 cells /day. These modified cells were encapsulated and implanted in vivo in the same conditions as previously described. All the mouse strains showed a sustained increase in their hematocrit and a high proportion of viable cells were observed after retrieval of the capsules. Finally, in the perspective of human application, a syngeneic model using encapsulated murine myoblasts transplanted in mice was realized to investigate the roles of both the host immune response and the cells metabolic requirements. Various loading densities and anti-inflammatory as well as immunosuppressive drugs were studied. The results showed that an immune process is responsible of cell death in capsules loaded at high cell density. A supporting matrix of PVA was shown to limit the cell density and to avoid early metabolic cell death, preventing therefore the immune reaction. This study has led to the development of encapsulated cells of human origin producing clinically relevant amounts of human EPO. This work resulted also to the optimization of cell encapsulation technical parameters allowing to begin a clinical application in end-stage renal failure patients. Résumé La thérapie cellulaire s'est imposée comme une stratégie de traitement potentiel pour diverses maladies. Si l'on considère leur morphologie et leur fonction, les cellules peuvent être transplantées dans le but de remplacer une perte tissulaire comme c'est le cas pour les transfusions sanguines ou les greffes de moelle osseuse ou de cellules pancréatiques. Avec le développement de la thérapie génique, les cellules sont également devenues des supports biologiques pour la production de molécules thérapeutiques. Cette stratégie représente le fondement de la thérapie génique ex vivo, caractérisée par le prélèvement de cellules d'un organisme, leur modification génétique et leur implantation dans le même individu ou dans un autre organisme. Le choix du type de cellule et la fonction qu'elle doit remplir pour un traitement spécifique dépend du tissu ou de la fonction biologique atteintes. Le but général de ce travail est de développer .une approche par thérapie génique ex vivo de sécrétion d'érythropoïétine (Epo) chez des patients souffrant d'anémie, prolongeant ainsi des travaux réalisés avec des cellules murines implantées chez des souris et des rats. Dans cette perpective, notre choix s'est porté sur des cellules humaines primaires allogéniques. En effet, contrairement aux cellules autologues, une caractérisation unique de cellules allogéniques peut déboucher sur de nombreuses applications. Par ailleurs, l'emploi de cellules allogéniques permet d'éviter les riques de zoonose que l'on peut rencontrer avec des cellules xénogéniques. Afin de protéger les cellules allogéniques soumises à une réaction immunitaire, leur confinement dans des macro-capsules cylindriques avant leur implantation permet d'éviter leur contact avec les cellules immunitaires de l'hôte, et de les retrouver sans difficulté en cas d'intolérance ou d'effet secondaire. Dans un premier temps, nous avons évalué la survie de différentes lignées cellulaires humaines primaires, une fois encapsulées et implantées dans le tissu sous-cutané de souris, soit immunocompétentes, soit immunodéprimées naturellement ou par l'intermédiaire d'un immunosuppresseur. Ce modèle in vivo correspond à des conditions xénogéniques et représente par conséquent un environnement de loin plus hostile pour les cellules qu'une transplantation allogénique. Une lignée fibroblastique issue du prépuce d'un jeune enfant, nommée DARC 3 .1, a montré une remarquable résistance avec un score de survie moyen le plus élevé parmi les lignées testées. Par la suite, nous nous sommes intéressés aux paramètres intervenant dans la réalisation du système d'implantation afin d'optimaliser les conditions pour une meilleure adaptation des cellules à ce nouvel environnement. En effet, en raison de l'apparition, après un mois in vivo, de calcifications au niveau de la matrice de polyvinyl alcohol (PVA) servant de support aux cellules encapsulées, différents paramètres ont été étudiés, tels que les procédures de fabrication, les lots de PVA ou encore les lignées cellulaires encapsulées, afin de mettre en évidence leur rôle respectif dans la survenue de ce processus. Nous avons montré que l'apparition des calcifications peut être totalement prévenue par l'utilisation d'eau pure au lieu de tampon phosphaté lors du rinçage des matrices de PVA. De plus, nous avons observe qu'un taux de lactate déshydrogénase cellulaire élevé était corrélé avec une diminution des dépôts de calcium au sein de la matrice en raison d'un micro-environnement plus acide inhibant la précipitation du calcium. Après sélection de la lignée cellulaire appropriée et de l'optimisation des conditions d'encapsulation, une modification génétique des fibroblastes DARC 3.1 a été réalisée par une approche rétrovirale, permettant l'insertion de l'ADN du gène de l'Epo dans le génome cellulaire. Diverses modifications, tant au niveau génétique qu'au niveau des conditions d'infection, ont été entreprises afin d'obtenir des taux de sécrétion d'Epo cliniquement appropriés. L'insertion dans la séquence d'ADN d'un élément de régulation post¬transcriptionnelle dérivé du virus de l'hépatite du rongeur (« woodchuck ») ainsi que d'une séquence consensus appelée « Kozak » ont abouti à une augmentation de sécrétion d'Epo 7.5 fois plus importante. De même, l'optimisation de la multiplicité d'infection et la sélection plus drastique des cellules hautement productrices ont permis finalement d'obtenir une sécrétion correspondant à 200 IU d'Epo/10E6 cells/jour. Ces cellules génétiquement modifiées ont été encapsulées et implantées in vivo dans les mêmes conditions que celles décrites plus haut. Toutes les souris transplantées ont montré une augmentation significative de leur hématocrite et une proportion importante de cellules présentait une survie conservée au moment de l'explantation des capsules. Finalement, dans la perspective d'une application humaine, un modèle syngénique a été proposé, basé sur l'implantation de myoblastes murins encapsulés dans des souris, afin d'investiguer les rôles respectifs de la réponse immunitaire du receveur et des besoins métaboliques cellulaires sur leur survie à long terme. Les cellules ont été encapsulées à différentes densités et les animaux transplantés se sont vus administrer des injections de molécules anti-inflammatoires ou immunosuppressives. Les résultats ont démontré qu'une réaction immunologique péri-capsulaire était à la base du rejet cellulaire dans le cas de capsules à haute densité cellulaire. Une matrice de PVA peut limiter cette densité et éviter une mort cellulaire précoce due à une insuffisance métabolique et par conséquent prévenir la réaction immunitaire. Ce travail a permis le développement de cellules encapsulées d'origine humaine sécrétant des taux d'Epo humaine adaptés à des traitements cliniques. De pair avec l'optimalisation des paramètres d'encapsulation, ces résultats ont abouti à l'initiation d'une application clinique destinée à des patients en insuffisance rénale terminale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the implementation of the 2000 Q-MC specification, an incentive is provided to produce an optimized gradation to improve placement characteristics. Also, specifications for slip-formed barrier rail have changed to require an optimized gradation. Generally, these optimized gradations have been achieved by blending an intermediate aggregate with the coarse and fine aggregate. The demand for this intermediate aggregate has been satisfied by using crushed limestone chips developed from the crushing of the parent concrete stone. The availability, cost, and physical limitations of crushed limestone chips can be a concern. A viable option in addressing these concerns is the use of gravel as the intermediate aggregate. Unfortunately, gravels of Class 3I durability are limited to a small geographic area in Mississippi river sands north of the Rock River. Class 3 or Class 2 durability gravels are more widely available across the state. The durability classification of gravels is based on the amount and quality of the carbonate fraction of the material. At present, no service histories or research exists to assess the impact of using Class 3 or 2 durability gravels would have on the long-term durability of Portland cement concrete (PCC) pavement requiring Class 3I aggregate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ab initio periodic unrestricted Hartree-Fock method has been applied in the investigation of the ground-state structural, electronic, and magnetic properties of the rutile-type compounds MF2 (M=Mn, Fe, Co, and Ni). All electron Gaussian basis sets have been used. The systems turn out to be large band-gap antiferromagnetic insulators; the optimized geometrical parameters are in good agreement with experiment. The calculated most stable electronic state shows an antiferromagnetic order in agreement with that resulting from neutron scattering experiments. The magnetic coupling constants between nearest-neighbor magnetic ions along the [001], [111], and [100] (or [010]) directions have been calculated using several supercells. The resulting ab initio magnetic coupling constants are reasonably satisfactory when compared with available experimental data. The importance of the Jahn-Teller effect in FeF2 and CoF2 is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Establishing CD8(+) T cell cultures has been empirical and the published methods have been largely individual laboratory based. In this study, we optimized culturing conditions and show that IL-2 concentration is the most critical factor for the success of establishing CD8(+) T cell cultures. High IL-2 concentration encouraged T cells to non-specifically proliferate, express a B cell marker, B220, and undergo apoptosis. These cells also lose typical irregular T cell morphology and are incapable of sustaining long-term cultures. Using tetramer and intracellular cytokine assessments, we further demonstrated that many antigen-specific T cells have been rendered nonfunctional when expanded under high IL-2 concentration. When IL-2 is used in the correct range, B220-mediated cell depletion greatly enhanced the success rate of such T cell cultures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Application of semi-distributed hydrological models to large, heterogeneous watersheds deals with several problems. On one hand, the spatial and temporal variability in catchment features should be adequately represented in the model parameterization, while maintaining the model complexity in an acceptable level to take advantage of state-of-the-art calibration techniques. On the other hand, model complexity enhances uncertainty in adjusted model parameter values, therefore increasing uncertainty in the water routing across the watershed. This is critical for water quality applications, where not only streamflow, but also a reliable estimation of the surface versus subsurface contributions to the runoff is needed. In this study, we show how a regularized inversion procedure combined with a multiobjective function calibration strategy successfully solves the parameterization of a complex application of a water quality-oriented hydrological model. The final value of several optimized parameters showed significant and consistentdifferences across geological and landscape features. Although the number of optimized parameters was significantly increased by the spatial and temporal discretization of adjustable parameters, the uncertainty in water routing results remained at reasonable values. In addition, a stepwise numerical analysis showed that the effects on calibration performance due to inclusion of different data types in the objective function could be inextricably linked. Thus caution should be taken when adding or removing data from an aggregated objective function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many research projects in life sciences require purified biologically active recombinant protein. In addition, different formats of a given protein may be needed at different steps of experimental studies. Thus, the number of protein variants to be expressed and purified in short periods of time can expand very quickly. We have therefore developed a rapid and flexible expression system based on described episomal vector replication to generate semi-stable cell pools that secrete recombinant proteins. We cultured these pools in serum-containing medium to avoid time-consuming adaptation of cells to serum-free conditions, maintain cell viability and reuse the cultures for multiple rounds of protein production. As such, an efficient single step affinity process to purify recombinant proteins from serum-containing medium was optimized. Furthermore, a series of multi-cistronic vectors were designed to enable simultaneous expression of proteins and their biotinylation in vivo as well as fast selection of protein-expressing cell pools. Combining these improved procedures and innovative steps, exemplified with seven cytokines and cytokine receptors, we were able to produce biologically active recombinant endotoxin free protein at the milligram scale in 4-6weeks from molecular cloning to protein purification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glutamine has multiple roles in brain metabolism and its concentration can be altered in various pathological conditions. An accurate knowledge of its concentration is therefore highly desirable to monitor and study several brain disorders in vivo. However, in recent years, several MRS studies have reported conflicting glutamine concentrations in the human brain. A recent hypothesis for explaining these discrepancies is that a short T2 component of the glutamine signal may impact on its quantification at long echo times. The present study therefore aimed to investigate the impact of acquisition parameters on the quantified glutamine concentration using two different acquisition techniques, SPECIAL at ultra-short echo time and MEGA-SPECIAL at moderate echo time. For this purpose, MEGA-SPECIAL was optimized for the first time for glutamine detection. Based on the very good agreement of the glutamine concentration obtained between the two measurements, it was concluded that no impact of a short T2 component of the glutamine signal was detected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Dried blood spots (DBS) sampling has gained popularity in the bioanalytical community as an alternative to conventional plasma sampling, as it provides numerous benefits in terms of sample collection and logistics. The aim of this work was to show that these advantages can be coupled with a simple and cost-effective sample pretreatment, with subsequent rapid LC-MS/MS analysis for quantitation of 15 benzodiazepines, six metabolites and three Z-drugs. For this purpose, a simplified offline procedure was developed that consisted of letting a 5-µl DBS infuse directly into 100 µl of MeOH, in a conventional LC vial. RESULTS: The parameters related to the DBS pretreatment, such as extraction time or internal standard addition, were investigated and optimized, demonstrating that passive infusion in a regular LC vial was sufficient to quantitatively extract the analytes of interest. The method was validated according to international criteria in the therapeutic concentration ranges of the selected compounds. CONCLUSION: The presented strategy proved to be efficient for the rapid analysis of the selected drugs. Indeed, the offline sample preparation was reduced to a minimum, using a small amount of organic solvent and consumables, without affecting the accuracy of the method. Thus, this approach enables simple and rapid DBS analysis, even when using a non-DBS-dedicated autosampler, while lowering the costs and environmental impact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A common operation in wireless ad hoc networks is the flooding of broadcast messages to establish network topologies and routing tables. The flooding of broadcast messages is, however, a resource consuming process. It might require the retransmission of messages by most network nodes. It is, therefore, very important to optimize this operation. In this paper, we first analyze the multipoint relaying (MPR) flooding mechanism used by the Optimized Link State Routing (OLSR) protocol to distribute topology control (TC) messages among all the system nodes. We then propose a new flooding method, based on the fusion of two key concepts: distance-enabled multipoint relaying and connected dominating set (CDS) flooding. We present experimental simulationsthat show that our approach improves the performance of previous existing proposals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low energy x-ray fluorescence (LEXRF) detection was optimized for imaging cerebral glucose metabolism by mapping the fluorine LEXRF signal of 19 F in 19 FDG, trapped as intracellular 19 F-deoxyglucose-6-phosphate ( 19 FDG-6P) at 1μm spatial resolution from 3μm thick brain slices. 19 FDG metabolism was evaluated in brain structures closely resembling the general cerebral cytoarchitecture following formalin fixation of brain slices and their inclusion in an epon matrix. 2-dimensional distribution maps of 19 FDG-6P were placed in a cytoarchitectural and morphological context by simultaneous LEXRF mapping of N and O, and scanning transmission x-ray (STXM) imaging. A disproportionately high uptake and metabolism of glucose was found in neuropil relative to intracellular domains of the cell body of hypothalamic neurons, showing directly that neurons, like glial cells, also metabolize glucose. As 19 F-deoxyglucose-6P is structurally identical to 18 F-deoxyglucose-6P, LEXRF of subcellular 19 F provides a link to in vivo 18 FDG PET, forming a novel basis for understanding the physiological mechanisms underlying the 18 FDG PET image, and the contribution of neurons and glia to the PET signal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present here the synthesis of a highly O-carboxymethylated chitosan derivative. First, an improved protocol for the two-step synthesis of N-trimethyl chitosan (TMC) from chitosan was developed, yielding a maximum degree of quaternization (DQ) of up to 46.6%. Successively, the chitosan derivative O-carboxymethyl-N-trimethyl chitosan (CMTMC) was synthesized from the TMC obtained by applying an optimized synthesis pathway. In contrast to previous reports, the optimized protocol was shown to yield very high rates (>85%) of O-carboxymethylation of CMTMC, as shown by (1)H NMR and heteronuclear single quantum correlation ((1)H-(13)C HSQC). Finally, in vitro cytocompatibility (viability >80%) of the polymer was demonstrated using human fibroblasts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several clinical studies have reported that EEG synchrony is affected by Alzheimer’s disease (AD). In this paper a frequency band analysis of AD EEG signals is presented, with the aim of improving the diagnosis of AD using EEG signals. In this paper, multiple synchrony measures are assessed through statistical tests (Mann–Whitney U test), including correlation, phase synchrony and Granger causality measures. Moreover, linear discriminant analysis (LDA) is conducted with those synchrony measures as features. For the data set at hand, the frequency range (5-6Hz) yields the best accuracy for diagnosing AD, which lies within the classical theta band (4-8Hz). The corresponding classification error is 4.88% for directed transfer function (DTF) Granger causality measure. Interestingly, results show that EEG of AD patients is more synchronous than in healthy subjects within the optimized range 5-6Hz, which is in sharp contrast with the loss of synchrony in AD EEG reported in many earlier studies. This new finding may provide new insights about the neurophysiology of AD. Additional testing on larger AD datasets is required to verify the effectiveness of the proposed approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extracellular vesicles represent a rich source of novel biomarkers in the diagnosis and prognosis of disease. However, there is currently limited information elucidating the most efficient methods for obtaining high yields of pure exosomes, a subset of extracellular vesicles, from cell culture supernatant and complex biological fluids such as plasma. To this end, we comprehensively characterize a variety of exosome isolation protocols for their efficiency, yield and purity of isolated exosomes. Repeated ultracentrifugation steps can reduce the quality of exosome preparations leading to lower exosome yield. We show that concentration of cell culture conditioned media using ultrafiltration devices results in increased vesicle isolation when compared to traditional ultracentrifugation protocols. However, our data on using conditioned media isolated from the Non-Small-Cell Lung Cancer (NSCLC) SK-MES-1 cell line demonstrates that the choice of concentrating device can greatly impact the yield of isolated exosomes. We find that centrifuge-based concentrating methods are more appropriate than pressure-driven concentrating devices and allow the rapid isolation of exosomes from both NSCLC cell culture conditioned media and complex biological fluids. In fact to date, no protocol detailing exosome isolation utilizing current commercial methods from both cells and patient samples has been described. Utilizing tunable resistive pulse sensing and protein analysis, we provide a comparative analysis of 4 exosome isolation techniques, indicating their efficacy and preparation purity. Our results demonstrate that current precipitation protocols for the isolation of exosomes from cell culture conditioned media and plasma provide the least pure preparations of exosomes, whereas size exclusion isolation is comparable to density gradient purification of exosomes. We have identified current shortcomings in common extracellular vesicle isolation methods and provide a potential standardized method that is effective, reproducible and can be utilized for various starting materials. We believe this method will have extensive application in the growing field of extracellular vesicle research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four new extraction-free spectrophotometric methods have been established for the quantitation of famotidine (FMT). The methods are based on the formation of yellow ion-pair complexes between FMT and four sulphonphthalein dyes viz., bromothymol blue (method A), bromophenol blue (method B), bromocresol purple (method C) and bromocresol green (method D) in dioxane or acetone medium. The experimental variables such as reagent concentration, solvent medium and reaction time have been carefully optimized to achieve the highest sensitivity. The proposed methods were applied successfully to the determination of famotidine in tablets with good accuracy and precision and without interferences from common excipients. The results obtained by the proposed methods were compared favorably with those of the reference method.