998 resultados para Optical Sensitivity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A refractive index sensing system has been demonstrated, which is based upon an in-line fibre long period grating Mach-Zehnder interferometer with a heterodyne interrogation technique. This sensing system has comparable accuracy to laboratory-based techniques used in industry such as high performance liquid chromatography and UV spectroscopy. The advantage of this system is that measurements can be made in-situ for applications in continuous process control. Compared to other refractive index sensing schemes using LPGs, this approach has two main advantages. Firstly, the system relies on a simple optical interrogation system and therefore has the real potential for being low cost, and secondly, so far as we are aware it provides the highest refractive index resolution reported for any fibre LPG device.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high gains in performance predicted for optical immersion are difficult to achieve in practice due to total internal reflection at the lens/detector interface. By reducing the air gap at this interface optical tunneling becomes possible and the predicted gains can be realized in practical devices. Using this technique we have demonstrated large performance gains by optically immersing mid-infrared heterostructure InA1Sb LEDs and photodiodes using hypershperical germanium lenses. The development of an effective method of optical immersion that gives excellent optical coupling has produced a photodiode with a peak room temperature detectivity (D*) of 5.3 x 109 cmHz½W-1 at λpeak=5.4μm and a 40° field of view. A hyperspherically immersed LED showed a f-fold improvement in the external efficiency, and a 3-fold improvement in the directionality compared with a conventional planar LED for f/2 optical systems. The incorporation of these uncooled devices in a White cell produced a NO2 gas sensing system with 2 part-per-million sensitivity, with an LED drive current of <5mA. These results represent a significant advance in the use of solid state devices for portable gas sensing systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long period fiber grating (LPFG) can be used as active gain controlling device in EDFA. However, LPFGs fabricated in the standard telecom fiber only have a typical temperature sensitivity of 3-10nm/100°C, which may not be sufficient for implementing tuneable filters capable of wide tuning range and high tuning efficiency. In this paper, we report a theoretical and experimental investigation of thermal properties of LPFGs fabricated in B/Ge co-doped optical fiber. We have found that the temperature sensitivity of the LPFGs in the B/Ge fiber is considerably increased compared with those produced in the standard fiber. The LPFGs written in the B/Ge fiber have achieved, on average, one order of magnitude higher sensitivity than that of the LPFGs produced in the standard telecom fiber. We have also identified that the thermal response of LPFG is strongly dependent on the order of the coupled resonant cladding mode. The maximum sensitivity of 1.75nm/°C achieved by the 10th cladding mode of the 240μm LPFG is nearly 24 times that of the minimum value (0.075nm/C) exhibited by the 30th mode of the 34μm LPFG. Such devices may lead to high-efficiency and low-cost thermal/electrical tunable loss filters or sensors with extremely high temperature resolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe some recently developed fibre grating sensing devices (Bragg and long-period types) and applications with emphasis on simultaneous measurement of multiple measurands using combinational grating structures, and the realisation of ultra-high sensitivity sensors utilising the quadratic dispersion of long-period grating structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To evaluate lenses produced by excimer laser ablation of poly(methyl methacrylate) (PMMA) plates. Setting: University research laboratory. Methods: Two Nidek EC-5000 scanning-slit excimer laser systems were used to ablate plane-parallel plates of PMMA. The ablated lenses were examined by focimetry, interferometry, and mechanical surface profiling. Results: The spherical optical powers of the lenses matched the expected values, but the cylindrical powers were generally lower than intended. Interferometry revealed marked irregularity in the surface of negative corrections, which often had a positive “island” at their center. Positive corrections were generally smoother. These findings were supported by the results of mechanical profiling. Contrast sensitivity measurements carried out when observing through ablated lenses whose power had been neutralized with a suitable spectacle lens of opposite sign confirmed that the surface irregularities of the ablated lenses markedly reduced contrast sensitivity over a range of spatial frequencies. Conclusion: Improvements in beam delivery systems seem desirable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Controlling the water content within a product has long been required in the chemical processing, agriculture, food storage, paper manufacturing, semiconductor, pharmaceutical and fuel industries. The limitations of water content measurement as an indicator of safety and quality are attributed to differences in the strength with which water associates with other components in the product. Water activity indicates how tightly water is "bound," structurally or chemically, in products. Water absorption introduces changes in the volume and refractive index of poly(methyl methacrylate) PMMA. Therefore for a grating made in PMMA based optical fiber, its wavelength is an indicator of water absorption and PMMA thus can be used as a water activity sensor. In this work we have investigated the performance of a PMMA based optical fiber grating as a water activity sensor in sugar solution, saline solution and Jet A-1 aviation fuel. Samples of sugar solution with sugar concentration from 0 to 8%, saline solution with concentration from 0 to 22%, and dried (10ppm), ambient (39ppm) and wet (68ppm) aviation fuels were used in experiments. The corresponding water activities are measured as 1.0 to 0.99 for sugar solution, 1.0 to 0.86 for saline solution, and 0.15, 0.57 and 1.0 for the aviation fuel samples. The water content in the measured samples ranges from 100% (pure water) to 10 ppm (dried aviation fuel). The PMMA based optical fiber grating exhibits good sensitivity and consistent response, and Bragg wavelength shifts as large as 3.4 nm when the sensor is transferred from dry fuel to wet fuel. © 2014 Copyright SPIE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Combined the large evanescent field of microfiber with the high thermal conductivity of graphene, a sensitive all-fiber temperature sensor based on graphene-assisted micro fiber is proposed and experimentally demonstrated. Microfiber can be easily attached with graphene due to the electrostatic 6 force, resulting in an effective interaction between graphene and the evanescent field of microfiber. The change of the ambient temperature has a great influence on the conductivity of graphene, leading to the variation of the effective refractive index of microfiber. Consequently, the optical power transmission will be changed. The temperature sensitivity of 0.1018 dB/°C in the heating process and 0.1052 dB/°C in the cooling process as well as a high resolution of 0.0098 °C is obtained in the experiment. The scheme may have great potential in sensing fields owing to the advantages of high sensitivity, compact size, and low cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the first time to the authors' knowledge, fiber Bragg gratings (FBGs) with >80° tilted structures nave been fabricated and characterized. Their performance in sensing temperature, strain, and the surrounding medium's refractive index was investigated. In comparison with normal FBGs and long-period gratings (LPGs), >80° tilted FBGs exhibit significantly higher refractive-index responsivity and lower thermal cross sensitivity. When the grating sensor was used to detect changes in refractive index, a responsivity as high as 340 nm/refractive-index unit near an index of 1.33 was demonstrated, which is three times higher than that of conventional LPGs. © 2006 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes advances in the characterisation, calibration and data processing of optical coherence tomography (OCT) systems. Femtosecond (fs) laser inscription was used for producing OCT-phantoms. Transparent materials are generally inert to infra-red radiations, but with fs lasers material modification occurs via non-linear processes when the highly focused light source interacts with the materials. This modification is confined to the focal volume and is highly reproducible. In order to select the best inscription parameters, combination of different inscription parameters were tested, using three fs laser systems, with different operating properties, on a variety of materials. This facilitated the understanding of the key characteristics of the produced structures with the aim of producing viable OCT-phantoms. Finally, OCT-phantoms were successfully designed and fabricated in fused silica. The use of these phantoms to characterise many properties (resolution, distortion, sensitivity decay, scan linearity) of an OCT system was demonstrated. Quantitative methods were developed to support the characterisation of an OCT system collecting images from phantoms and also to improve the quality of the OCT images. Characterisation methods include the measurement of the spatially variant resolution (point spread function (PSF) and modulation transfer function (MTF)), sensitivity and distortion. Processing of OCT data is a computer intensive process. Standard central processing unit (CPU) based processing might take several minutes to a few hours to process acquired data, thus data processing is a significant bottleneck. An alternative choice is to use expensive hardware-based processing such as field programmable gate arrays (FPGAs). However, recently graphics processing unit (GPU) based data processing methods have been developed to minimize this data processing and rendering time. These processing techniques include standard-processing methods which includes a set of algorithms to process the raw data (interference) obtained by the detector and generate A-scans. The work presented here describes accelerated data processing and post processing techniques for OCT systems. The GPU based processing developed, during the PhD, was later implemented into a custom built Fourier domain optical coherence tomography (FD-OCT) system. This system currently processes and renders data in real time. Processing throughput of this system is currently limited by the camera capture rate. OCTphantoms have been heavily used for the qualitative characterization and adjustment/ fine tuning of the operating conditions of OCT system. Currently, investigations are under way to characterize OCT systems using our phantoms. The work presented in this thesis demonstrate several novel techniques of fabricating OCT-phantoms and accelerating OCT data processing using GPUs. In the process of developing phantoms and quantitative methods, a thorough understanding and practical knowledge of OCT and fs laser processing systems was developed. This understanding leads to several novel pieces of research that are not only relevant to OCT but have broader importance. For example, extensive understanding of the properties of fs inscribed structures will be useful in other photonic application such as making of phase mask, wave guides and microfluidic channels. Acceleration of data processing with GPUs is also useful in other fields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper develops a theoretical analysis of the tradeoff between carrier suppression and nonlinearities induced by optical IQ modulators in direct-detection subcarrier multiplexing systems. The tradeoff is obtained by examining the influence of the bias conditions of the modulator on the transmitted single side band signal. The frequency components in the electric field and the associated photocurrent at the output of the IQ modulator are derived mathematically. For any frequency plan, the optimum bias point can be identified by calculating the sensitivity gain for every subchannel. A setup composed of subcarriers located at multiples of the data rate ensures that the effects of intermodulation distortion are studied in the most suitable conditions. Experimental tests with up to five QPSK electrical subchannels are performed to verify the mathematical model and validate the predicted gains in sensitivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have experimentally demonstrated an active loading sensor system based on a fiber ring laser with single-polarization output using an intra-cavity 45°-tilted fiber grating (45°-TFG). When the laser cavity fiber subjected to loading, the laser output is encoded with the load and can be measured and monitored by a power metre. A loading sensitivity as high as 0.033/ (kg·m-1) has been achieved using this laser. The experiment results clearly show that single polarization fiber laser may be developed to a low-cost high-sensitivity loading sensor system. © 2014 SPIE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the pattern-dependent decoding failures in full-field electronic dispersion compensation (EDC) by offline processing of experimental signals, and find that the performance of such an EDC receiver may be degraded by an isolated "1" bit surrounded by long strings of consecutive "0s". By reducing the probability of occurrence of this kind of isolated "1" and using a novel adaptive threshold decoding method, we greatly improve the compensation performance to achieve 10-Gb/s on-off keyed signal transmission over 496-km field-installed single-mode fiber without optical dispersion compensation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strain and thermal sensitivities of germanate and tellurite glass fibres were measured using a fibre Fabry-Perot (FFP) interferometer and fibre Bragg gratings (FBG). The strain phase sensitivity for germanate and tellurite fibre were 5900×103 rad/m and 5600×103 rad/m respectively at a central wavelength of 1540nm using FFP interferometer, which is consistent with the value of 1.22pm/µepsilon obtained for a germanate fibre FBG. The Young's modulus for germanate and tellurite fibre were also measured to be 58GPa and 37GPa. The thermal responses of germanate fibre were examined as 24.71 and 16.80 pm/°C at 1540nm and 1033nm wavelength using the FBG.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an implementation of high-sensitivity optical chemsensors based on FBGs UV-inscribed in D-shape and multimode fibres and sensitized by HF-etching treatment, demonstrating a capability of detecting chemical concentration changes as small as < 0.5%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate a high sensitivity biosensor by fine tailoring mode dispersion and sensitivity of dual-peak LPGs using light-cladding-etching method. The etched device has been used to detect concentration of Hemoglobin protein in sugar solution, showing a sensitivity as high as 20nm/1%.