932 resultados para Ophthalmic Optics and Devices
Resumo:
We propose macroscopic generalizations of the Einstein-Podolsky-Rosen paradox in which the completeness of quantum mechanics is contrasted with forms of macroscopic reality and macroscopic local reality defined in relation to Schrodinger's original 'cat' paradox.
Resumo:
In this letter we report the carrier mobilities in an inorganic nanocrystal: conducting polymer composite. The composite material in question (lead sulphide nanocrystals in the conducting polymer poly [2-methoxy-5-(2(')-ethyl-hexyloxy)-p-phenylene vinylene] (MEH-PPV) was made using a single-pot, surfactant-free synthesis. Mobilties were measured using time of flight techniques. We have found that the inclusion of PbS nanocrystals in MEH-PPV both balances and markedly increases the hole and electron mobilities-the hole mobility is increased by a factor of similar to 10(5) and the electron mobility increased by similar to 10(7) under an applied bias of 5 kV cm(-1). These results explain why dramatic improvements in electrical conductivity and photovoltaic performance are seen in devices fabricated from these composites.
Resumo:
Purpose: To review the epidemiology of serious ocular trauma presenting to Cairns Base Hospital, from the far north Queensland health districts. Methods: A retrospective study of cases from January 1995 to November 2002 inclusive. Cases were analysed with respect to demographics, cause and nature of injury, method of transport and time to and type of ophthalmic treatment, and visual outcomes. Results: There were 226 cases identified, including 71 open-globe and 155 closed-globe injuries. The annual rate of injury was 3.7 per 100 000 for open-globe and 11.8 per 100 000 in total. The Aboriginal and Torres Strait Islander population from the far north Queensland districts showed a disproportionate incidence, with 38% of the total number of injuries, despite representing only 12.3% of the population. Assault in the Aboriginal and Torres Strait Islander population resulted in 69.6% of injuries in men and 75.8% of injuries in women. Of all assaults 76.2% were alcohol-related. The majority (71.5%) of injuries in the Caucasian population were due to accidental blunt and sharp trauma. In total, 77.4% of injuries occurred in men, with an average age of 31 years. Of all open and closed injuries in the study, a final visual acuity of 6/12 or better was achieved in 47.8% of eyes and a final visual acuity of 6/60 or less occurred in 17.7% of patients, 20.8% patients were lost to follow up. In total, 14.1% of open injuries required enucleation/evisceration. Conclusions: The incidence of ocular trauma in far north Queensland is equal to other Australian populations. However, there is a disproportionately high incidence in the Aboriginal and Torres Strait Islander population. Alcohol-related assault is a significant cause of visual loss in the Aboriginal and Torres Strait Islander population. Closed-globe injuries are more common than open globe; however, the latter have poorer visual prognosis. Initial visual acuity of all injuries correlated with final visual acuity.
Resumo:
We show that two evanescently coupled chi((2)) parametric oscillators provide a tunable bright source of quadrature squeezed light, Einstein-Podolsky-Rosen correlations and quantum entanglement. Analysing the system in the above threshold regime, we demonstrate that these properties can be controlled by adjusting the coupling strengths and the cavity detunings. As this can be implemented with integrated optics, it provides a possible route to rugged and stable EPR sources. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
We compare theoretically the tripartite entanglement available from the use of three concurrent x(2) nonlinearities and three independent squeezed states mixed on beamsplitters, using an appropriate version of the van Loock-Furusawa inequalities. We also define three-mode generalizations of the Einstein-Podolsky-Rosen paradox which are an alternative for demonstrating the inseparability of the density matrix.
Resumo:
We apply the projected Gross-Pitaevskii equation (PGPE) formalism to the experimental problem of the shift in critical temperature T-c of a harmonically confined Bose gas as reported in Gerbier , Phys. Rev. Lett. 92, 030405 (2004). The PGPE method includes critical fluctuations and we find the results differ from various mean-field theories, and are in best agreement with experimental data. To unequivocally observe beyond mean-field effects, however, the experimental precision must either improve by an order of magnitude, or consider more strongly interacting systems. This is the first application of a classical field method to make quantitative comparison with experiment.
Dual-symmetric Lagrangians in quantum electrodynamics: I. Conservation laws and multi-polar coupling
Resumo:
By using a complex field with a symmetric combination of electric and magnetic fields, a first-order covariant Lagrangian for Maxwell's equations is obtained, similar to the Lagrangian for the Dirac equation. This leads to a dual-symmetric quantum electrodynamic theory with an infinite set of local conservation laws. The dual symmetry is shown to correspond to a helical phase, conjugate to the conserved helicity. There is also a scaling symmetry, conjugate to the conserved entanglement. The results include a novel form of the photonic wavefunction, with a well-defined helicity number operator conjugate to the chiral phase, related to the fundamental dual symmetry. Interactions with charged particles can also be included. Transformations from minimal coupling to multi-polar or more general forms of coupling are particularly straightforward using this technique. The dual-symmetric version of quantum electrodynamics derived here has potential applications to nonlinear quantum optics and cavity quantum electrodynamics.
Resumo:
Photo-detection plays a fundamental role in experimental quantum optics and is of particular importance in the emerging field of linear optics quantum computing. Present theoretical treatment of photo-detectors is highly idealized and fails to consider many important physical effects. We present a physically motivated model for photo-detectors which accommodates for the effects of finite resolution, bandwidth and efficiency, as well as dark counts and dead-time. We apply our model to two simple well-known applications, which illustrates the significance of these characteristics.
Resumo:
We study a fermionic atom optics counterpart of parametric down-conversion with photons. This can be realized through dissociation of a Bose-Einstein condensate of molecular dimers consisting of fermionic atoms. We present a theoretical model describing the quantum dynamics of dissociation and find analytic solutions for mode occupancies and atomic pair correlations, valid in the short time limit. The solutions are used to identify upper bounds for the correlation functions, which are applicable to any fermionic system and correspond to ideal particle number-difference squeezing.
Resumo:
An optical quantum memory scheme using two narrow-linewidth cavities and some optical fibers is proposed. The cavities are connected via an optical fiber, and the gap of each cavity can be adjusted to allow photons with a certain bandwidth to transmit through or reflect back. Hence, each cavity acts as a shutter and the photons can be stored in the optical fiber between the cavities at will. We investigate the feasibility of using this device in storing a single photon. We estimate that with current technology storage of a photon qubit for up to 50 clock cycles (round trips) could be achieved with a probability of success of 85%. We discuss how this figure could be improved.
Resumo:
One of the most significant challenges facing the development of linear optics quantum computing (LOQC) is mode mismatch, whereby photon distinguishability is introduced within circuits, undermining quantum interference effects. We examine the effects of mode mismatch on the parity (or fusion) gate, the fundamental building block in several recent LOQC schemes. We derive simple error models for the effects of mode mismatch on its operation, and relate these error models to current fault-tolerant-threshold estimates.
Resumo:
Particles that can be trapped in optical tweezers range from tens of microns down to tens of nanometres in size. Interestingly, this size range includes large macromolecules. We show experimentally, in agreement with theoretical expectations, that optical tweezers can be used to manipulate single molecules of polyethylene oxide suspended in water. The trapped molecules accumulate without aggregating, so this provides optical control of the concentration of macromolecules in solution. Apart from possible applications such as the micromanipulation of nanoparticles, nanoassembly, microchemistry, and the study of biological macromolecules, our results also provide insight into the thermodynamics of optical tweezers.