926 resultados para Oil phase


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fast pyrolysis liquid or bio-oil has been used in engines with limited success. It requires a pilot fuel and/or an additive for successful combustion and there are problems with materials and liquid properties. It is immiscible with all conventional hydrocarbon fuels. Biodiesel, a product of esterification of vegetable oil with an alcohol, is widely used as a renewable liquid fuel as an additive to diesel at up to 20%. There are however limits to its use in conventional engines due to poor low temperature performance and variability in quality from a variety of vegetable oil qualities and variety of esterification processes. Within the European Project Bioliquids-CHP - a joint project between the European Commission and Russia - a study was undertaken to develop small scale CHP units based on engines and microturbines fuelled with bioliquids from fast pyrolysis and methyl esters of vegetable oil. Blends of bio-oil and biodiesel were evaluated and tested to overcome some of the disadvantages of using either fuel by itself. An alcohol was used as the co-solvent in the form of ethanol, 1-butanol or 2-propanol. Visual inspection of the blend homogeneity after 48 h was used as an indicator of the product stability and the results were plotted in a three phase chart for each alcohol used. An accelerated stability test was performed on selected samples in order to predict its long term stability. We concluded that the type and quantity of alcohol is critical for the blend formation and stability. Using 1-butanol gave the widest selection of stable blends, followed by blends with 2-propanol and finally ethanol, thus 1-butanol blends accepted the largest proportion of bio-oil in the mixture. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pyrolysis is one of several thermochemical technologies that convert solid biomass into more useful and valuable bio-fuels. Pyrolysis is thermal degradation in the complete or partial absence of oxygen. Under carefully controlled conditions, solid biomass can be converted to a liquid known as bie-oil in 75% yield on dry feed. Bio-oil can be used as a fuel but has the drawback of having a high level of oxygen due to the presence of a complex mixture of molecular fragments of cellulose, hemicellulose and lignin polymers. Also, bio-oil has a number of problems in use including high initial viscosity, instability resulting in increased viscosity or phase separation and high solids content. Much effort has been spent on upgrading bio-oil into a more usable liquid fuel, either by modifying the liquid or by major chemical and catalytic conversion to hydrocarbons. The overall primary objective was to improve oil stability by exploring different ways. The first was to detennine the effect of feed moisture content on bio-oil stability. The second method was to try to improve bio-oil stability by partially oxygenated pyrolysis. The third one was to improve stability by co-pyrolysis with methanol. The project was carried out on an existing laboratory pyrolysis reactor system, which works well with this project without redesign or modification too much. During the finishing stages of this project, it was found that the temperature of the condenser in the product collection system had a marked impact on pyrolysis liquid stability. This was discussed in this work and further recommendation given. The quantity of water coming from the feedstock and the pyrolysis reaction is important to liquid stability. In the present work the feedstock moisture content was varied and pyrolysis experiments were carried out over a range of temperatures. The quality of the bio-oil produced was measured as water content, initial viscosity and stability. The result showed that moderate (7.3-12.8 % moisture) feedstock moisture led to more stable bio-oil. One of drawbacks of bio-oil was its instability due to containing unstable oxygenated chemicals. Catalytic hydrotreatment of the oil and zeolite cracking of pyrolysis vapour were discllssed by many researchers, the processes were intended to eliminate oxygen in the bio-oil. In this work an alternative way oxygenated pyrolysis was introduced in order to reduce oil instability, which was intended to oxidise unstable oxygenated chemicals in the bio-oil. The results showed that liquid stability was improved by oxygen addition during the pyrolysis of beech wood at an optimum air factor of about 0.09-0.15. Methanol as a postproduction additive to bio-oil has been studied by many researchers and the most effective result came from adding methanol to oil just after production. Co-pyrolysis of spruce wood with methanol was undertaken in the present work and it was found that methanol improved liquid stability as a co-pyrolysis solvent but was no more effective than when used as a postproduction additive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The organic matter in five oil shales (three from the Kimmeridge Clay sequence, one from the Oxford Clay sequence and one from the Julia Creek deposits in Australia) has been isolated by acid demineralisation, separated into kerogens and bitumens by solvent extraction and then characterised in some detail by chromatographic, spectroscopic and degradative techniques. Kerogens cannot be characterised as easily as bitumens because of their insolubility, and hence before any detailed molecular information can be obtained from them they must be degraded into lower molecular weight, more soluble components. Unfortunately, the determination of kerogen structures has all too often involved degradations that were far too harsh and which lead to destruction of much of the structural information. For this reason a number of milder more selective degradative procedures have been tested and used to probe the structure of kerogens. These are: 1. Lithium aluminium hydride reduction. - This procedure is commonly used to remove pyrite from kerogens and it may also increase their solubility by reduction of labile functional groups. Although reduction of the kerogens was confirmed, increases in solubility were correlated with pyrite content and not kerogen reduction. 2. O-methylation in the presence of a phase transfer catalyst. - By the removal of hydrogen bond interactions via O-methylation, it was possible to determine the contribution of such secondary interactions to the insolubility of the kerogens. Problems were encountered with the use of the phase transfer catalyst. 3. Stepwise alkaline potassium permanganate oxidation. - Significant kerogen dissolution was achieved using this procedure but uncontrolled oxidation of initial oxidation products proved to be a problem. A comparison with the peroxytrifluoroaceticacid oxidation of these kerogens was made. 4. Peroxytrifluoroacetic acid oxidation. - This was used because it preferentially degrades aromatic rings whilst leaving any benzylic positions intact. Considerable conversion of the kerogens into soluble products was achieved with this procedure. At all stages of degradation the products were fully characterised where possible using a variety of techniques including elemental analysis, solution state 1H and 13C nuclear magnetic resonance, solid state 13C nuclear magnetic resonance, gel-permeationchromatography, gas chromatography-mass spectroscopy, fourier transform infra-red spectroscopy and some ultra violet-visible spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The literature relating to haze formation, methods of separation, coalescence mechanisms, and models by which droplets <100 μm are collected, coalesced and transferred, have been reviewed with particular reference to particulate bed coalescers. The separation of secondary oil-water dispersions was studied experimentally using packed beds of monosized glass ballotini particles. The variables investigated were superficial velocity, bed depth, particle size, and the phase ratio and drop size distribution of inlet secondary dispersion. A modified pump loop was used to generate secondary dispersions of toluene or Clairsol 350 in water with phase ratios between 0.5-6.0 v/v%.Inlet drop size distributions were determined using a Malvern Particle Size Analyser;effluent, coalesced droplets were sized by photography. Single phase flow pressure drop data were correlated by means of a Carman-Kozeny type equation. Correlations were obtained relating single and two phase pressure drops, as (ΔP2/μc)/ΔP1/μd) = kp Ua Lb dcc dpd Cine A flow equation was derived to correlate the two phase pressure drop data as, ΔP2/(ρcU2) = 8.64*107 [dc/D]-0.27 [L/D]0.71 [dp/D]-0.17 [NRe]1.5 [e1]-0.14 [Cin]0.26  In a comparison between functions to characterise the inlet drop size distributions a modification of the Weibull function provided the best fit of experimental data. The general mean drop diameter was correlated by: q_p q_p p_q /β      Γ ((q-3/β) +1) d qp = d fr  .α        Γ ((P-3/β +1 The measured and predicted mean inlet drop diameters agreed within ±15%. Secondary dispersion separation depends largely upon drop capture within a bed. A theoretical analysis of drop capture mechanisms in this work indicated that indirect interception and London-van der Waal's mechanisms predominate. Mathematical models of dispersed phase concentration m the bed were developed by considering drop motion to be analogous to molecular diffusion.The number of possible channels in a bed was predicted from a model in which the pores comprised randomly-interconnected passage-ways between adjacent packing elements and axial flow occured in cylinders on an equilateral triangular pitch. An expression was derived for length of service channels in a queuing system leading to the prediction of filter coefficients. The insight provided into the mechanisms of drop collection and travel, and the correlations of operating parameters, should assist design of industrial particulate bed coalescers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although well known for delivering various pharmaceutical agents, liposomes can be prepared to entrap gas rather than aqueous media and have the potential to be used as pressure probes in magnetic resonance imaging (MRI). Using these gas-filled liposomes (GFL) as tracers, MRI imaging of pressure regions of a fluid flowing through a porous medium could be established. This knowledge can be exploited to enhance recovery of oil from the porous rock regions within oil fields. In the preliminary studies, we have optimized the lipid composition of GFL prepared using a simple homogenization technique and investigated key physico-chemical characteristics (size and the physical stability) and their efficacy as pressure probes. In contrast to the liposomes possessing an aqueous core which are prepared at temperatures above their phase transition temperature (Tc), homogenization of the phospholipids such as 1,2-dipalmitoyl-sn-glycero-3- phosphocholine (DPPC) or 1,2-distearoyl-sn-glycero-3-phosphocoline (DSPC) in aqueous medium below their Tc was found to be crucial in formation of stable GFL. DSPC based preparations yielded a GFL volume of more than five times compared to their DPPC counter part. Although the initial vesicle sizes of both DSPC and DPPC based GFL were about 10 μm, after 7 days storage at 25°C, the vesicle sizes of both formulations significantly (p < 0.05) increased to 28.3 ± 0.3 μm and 12.3 ± 1.0 μm, respectively. When the DPPC preparation was supplemented with cholesterol at a 1:0.5 or 1:1 molar ratio, significantly (p < 0.05) larger vesicles were formed (12-13 μm), however, compared to DPPC only vesicles, both cholesterol supplemented formulations displayed enhanced stability on storage indicating a stabilizing effect of cholesterol on these gas-filled vesicles. In order to induce surface charge on the GFL, DPPC and cholesterol (1: 0.5 molar ratio) liposomes were supplemented with a cationic surfactant, stearylamine, at a molar ratio of 0.25 or 0.125. Interestingly, the ζ potential values remained around neutrality at both stearylamine ratios suggesting the cationic surfactant was not incorporated within the bilayers of the GFL. Microscopic analysis of GFL confirmed the presence of spherical structures with a size distribution between 1-8 μm. This study has identified that DSPC based GFL in aqueous medium dispersed in 2% w/v methyl cellulose although yielded higher vesicle sizes over time were most stable under high pressures exerted in MRI. Copyright © Informa Healthcare USA, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Biodiesel is a clean-burning, renewable and biodegradable diesel fuel substitute derived from animal fats and plant oils, which may play an important role in replacing diminishing fossil fuel reserves and combating climate change. Conventional biodiesel production uses soluble base catalysts, such as Na or K alkoxides, to convert oils into fuel, and as a result requires energy intensive aqueous quench cycles to isolate the biodiesel product. Results: Cs-doping nanoparticulate MgO, prepared via a novel, supercritical sol-gel method, yields a solid base catalyst with improved activity for the transesterification of pure triacylglycerides (TAGs) and olive oil. Conclusion: Here, X-ray absorption spectroscopy (XAS) is used to probe the local chemical environment of Cs atoms in order to identify the nature of the catalytically active species as CsMg(CO)(HO). © 2013 Society of Chemical Industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Produced water is a by-product of offshore oil and gas production, and is released in large volumes when platforms are actively processing crude oil. Some pollutants are not typically removed by conventional oil/water separation methods and are discharged with produced water. Oil and grease can be found dispersed in produced water in the form of tiny droplets, and polycyclic aromatic hydrocarbons (PAHs) are commonly found dissolved in produced water. Both can have acute and chronic toxic effects in marine environments even at low exposure levels. The analysis of the dissolved and dispersed phases are a priority, but effort is required to meet the necessary detection limits. There are several methods for the analysis of produced water for dispersed oil and dissolved PAHs, all of which have advantages and disadvantages. In this work, EPA Method 1664 and APHA Method 5520 C for the determination of oil and grease will be examined and compared. For the detection of PAHs, EPA Method 525 and PAH MIPs will be compared, and results evaluated. APHA Method 5520 C Partition-Infrared Method is a liquid-liquid extraction procedure with IR determination of oil and grease. For analysis on spiked samples of artificial seawater, extraction efficiency ranged from 85 – 97%. Linearity was achieved in the range of 5 – 500 mg/L. This is a single-wavelength method and is unsuitable for quantification of aromatics and other compounds that lack sp³-hybridized carbon atoms. EPA Method 1664 is the liquid-liquid extraction of oil and grease from water samples followed by gravimetric determination. When distilled water spiked with reference oil was extracted by this procedure, extraction efficiency ranged from 28.4 – 86.2%, and %RSD ranged from 7.68 – 38.0%. EPA Method 525 uses solid phase extraction with analysis by GC-MS, and was performed on distilled water and water from St. John’s Harbour, all spiked with naphthalene, fluorene, phenanthrene, and pyrene. The limits of detection in harbour water were 0.144, 3.82, 0.119, and 0.153 g/L respectively. Linearity was obtained in the range of 0.5-10 g/L, and %RSD ranged from 0.36% (fluorene) to 46% (pyrene). Molecularly imprinted polymers (MIPs) are sorbent materials made selective by polymerizing functional monomers and crosslinkers in the presence of a template molecule, usually the analytes of interest or related compounds. They can adsorb and concentrate PAHs from aqueous environments and are combined with methods of analysis including GC-MS, LC-UV-Vis, and desorption electrospray ionization (DESI)- MS. This work examines MIP-based methods as well as those methods previously mentioned which are currently used by the oil and gas industry and government environmental agencies. MIPs are shown to give results consistent with other methods, and are a low-cost alternative improving ease, throughput, and sensitivity. PAH MIPs were used to determine naphthalene spiked into ASTM artificial seawater, as well as produced water from an offshore oil and gas operation. Linearity was achieved in the range studied (0.5 – 5 mg/L) for both matrices, with R² = 0.936 for seawater and R² = 0.819 for produced water. The %RSD for seawater ranged from 6.58 – 50.5% and for produced water, from 8.19 – 79.6%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main driver for the investigation of fast pyrolysis oil marine fuel blends is EU directive 2012/33/EU which aims to cut the sulphur content of marine fuel and thereby reduce air pollution caused by marine vessels. The aim of this study was to investigate the miscibility of 3- and 4- component blends containing pyrolysis oil, 1-butanol, biodiesel (RME) and/or marine gas oil (MGO). The ideal blend would be a stable homogenous product with a minimum amount of butanol, whilst maximising the amount of pyrolysis oil. A successful blend would have properties suitable for use in marine engines. In order to successfully utilise a marine fuel blend in commercial vessels it should meet minimum specification requirements such as a flash point ≥60°C. Blends of pyrolysis oil, RME, MGO and 1-butanol were evaluated and characterised. The mixed blends were inspected after 48 hours for homogeneity and the results plotted on a tri-plot phase diagram. Homogenous samples were tested for water content, pH, acid number, viscosity and flash point as these give indicate a blend’s suitability for engine testing. The work forms part of the ReShip Project which is funded by Norwegian industry partners and the Research Council of Norway (The ENERGIX programme).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hydrothermal liquefaction(HTL) of algal biomass is a promising route to viable second generation biofuels. In this investigation HTL was assessed for the valorisation of algae used in the remediation of acid mine drainage (AMD). Initially the HTL process was evaluated using Arthrospira platensis (Spirulina) with additional metal sulphates to simulate metal remediation. Optimised conditions were then used to process a natural algal community (predominantly Chlamydomonas sp.) cultivated under two scenarios: high uptake and low uptake of metals from AMD. High metal concentrations appear to catalyse the conversion to bio-oil, and do not significantly affect the heteroatom content or higher heating value of the bio-oil produced. The associated metals were found to partition almost exclusively into the solid residue, favourable for potential metal recovery. High metal loadings also caused partitioning of phosphates from the aqueous phase to the solid phase, potentially compromising attempts to recycle process water as a growth supplement. HTL was therefore found to be a suitable method of processing algae used in AMD remediation, producing a crude oil suitable for upgrading into hydrocarbon fuels, an aqueous and gas stream suitable for supplementing the algal growth and the partitioning of most contaminant metals to the solid residue where they would be readily amenable for recovery and/or disposal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hydrothermal liquefaction(HTL) of algal biomass is a promising route to viable second generation biofuels. In this investigation HTL was assessed for the valorisation of algae used in the remediation of acid mine drainage (AMD). Initially the HTL process was evaluated using Arthrospira platensis (Spirulina) with additional metal sulphates to simulate metal remediation. Optimised conditions were then used to process a natural algal community (predominantly Chlamydomonas sp.) cultivated under two scenarios: high uptake and low uptake of metals from AMD. High metal concentrations appear to catalyse the conversion to bio-oil, and do not significantly affect the heteroatom content or higher heating value of the bio-oil produced. The associated metals were found to partition almost exclusively into the solid residue, favourable for potential metal recovery. High metal loadings also caused partitioning of phosphates from the aqueous phase to the solid phase, potentially compromising attempts to recycle process water as a growth supplement. HTL was therefore found to be a suitable method of processing algae used in AMD remediation, producing a crude oil suitable for upgrading into hydrocarbon fuels, an aqueous and gas stream suitable for supplementing the algal growth and the partitioning of most contaminant metals to the solid residue where they would be readily amenable for recovery and/or disposal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spouted bed was widely used due to its good mixing of particles and effective phase transferability between the gas and solid phase. In this paper, the transportation process of particles in a 3D spouted bed was studied using the Computational Particle Fluid Dynamics (CPFD) numerical method. Experiments were conducted to verify the validity of the simulation results. Distributions of the pressure, velocities and particle concentration of transportation devices were investigated. The motion state and characteristics of multiphase flows in the transportation device were demonstrated under various operating conditions. The results showed that a good consistency was obtained between the simulated results and the experimental results. The motion characteristics of the gas-solid two-phase flow in the device was effectively predicted, which could assist the optimal operating condition estimation for the spouted transportation process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective was the development a methodology to label organic compounds with radioactive iodine (123I) from the reaction of organic compound with iodine nomochloride (ICL). The process begins with the production of 123ICl from the oxidation of potassium iodate in acid medium. The ICL labeled with 123I is extracted from aqueous phase using diethyl ether and then mixed with the organic compound to be labeled and the process is based on adding the radioactive iodine to the Carbon-Carbon double bonds of the organic compound. To measure the efficiency of the labeling process, in all stages samples were collected and the total activity of 123I was measure. The results show a production yield of 82% for lubricant oil and 85% for gasoline and diesel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To formulate the water in oil (W/O) emulsion of corn silk (CS) extract and to evaluate its stability at various storage conditions. Methods: Ethanol CS extract was prepared using maceration (cold) technique. A 4 % CS emulsion was prepared using varying concentrations of liquid paraffin, ABIL EM90 and water. The formulations were kept at 40 oC for 28 days and to screen out the less stable formulations. The remaining formulations were further stressed at 50 oC to choose the most stable formulation. The optimized formulation was evaluated for physical characteristics including phase separation, rheology and mean droplet size. The physical stability of the formulation was evaluated by monitoring these parameters over a period of 12 weeks at 8, 25, 40 and 40 oC, and 75 % RH. Results: The chosen formulation showed good resistance to phase separation on centrifugation under all storage conditions. Rheological behavior followed non-Newtonian pseudoplastic pattern at various storage conditions. Mean droplet size of freshly prepared formulation was 2.98 ± 1.32 µm and did not show significant (p < 0.05) changes at normal storage conditions (8 and 25 oC). Conclusion: The findings indicate that the developed CS extract W/O emulsion is stable and therefore may be suitable for topical use on skin as an antioxidant preparation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates fast pyrolysis bio-oils produced from alkali-metal-impregnated biomass (beech wood). The impregnation aim is to study the catalytic cracking of the pyrolysis vapors as a result of potassium or phosphorus. It is recognized that potassium and phosphorus in biomass can have a major impact on the thermal conversion processes. When biomass is pyrolyzed in the presence of alkali metal cations, catalytic cracking of the pyrolysis liquids occurs in the vapor phase, reducing the organic liquids produced and increasing yields of water, char, and gas, resulting in a bio-oil that has a lower calorific value and an increased chance of phase separation. Beech wood was impregnated with potassium or phosphorus (K impregnation and P impregnation, respectively) in the range of 0.10-2.00 wt %. Analytical pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) was used to examine the pyrolysis products during thermal degradation, and thermogravimetric analysis (TGA) was used to examine the distribution of char and volatiles. Both potassium and phosphorus are seen to catalyze the pyrolytic decomposition of biomass and modify the yields of products. 3-Furaldehyde and levoglucosenone become more dominant products upon P impregnation, pointing to rearrangement and dehydration routes during the pyrolysis process. Potassium has a significant influence on cellulose and hemicellulose decomposition, not just on the formation of levoglucosan but also other species, such as 2(5H)-furanone or hydroxymethyl-cyclopentene derivatives. Fast pyrolysis processing has also been undertaken using a laboratory-scale continuously fed bubbling fluidized-bed reactor with a nominal capacity of 1 kg h-1 at the reaction temperature of 525 °C. An increase in the viscosity of the bio-oil during the stability assessment tests was observed with an increasing percentage of impregnation for both additives. This is because bio-oil undergoes polymerization while placed in storage as a result of the inorganic content. The majority of inorganics are concentrated in the char, but small amounts are entrained in the pyrolysis vapors and, therefore, end up in the bio-oil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A family of silica supported, magnetite nanoparticle catalysts was synthesized and investigated for continuous flow acetic acid ketonization as a model pyrolysis bio-oil upgrading reaction. Physicochemical properties of Fe3O4/SiO2 catalysts were characterized by HRTEM, XAS, XPS, DRIFTS, TGA and porosimetry. Acid site densities were inversely proportional to Fe3O4 particle size, although acid strength and Lewis character were size invariant, and correlated with the specific activity for vapor phase acetic ketonization to acetone. A constant activation energy (~110 kJ.mol-1), turnover frequency (~13 h-1) and selectivity to acetone of 60 % were observed for ketonization across the catalyst series, implicating Fe3O4 as the principal active component of Red Mud waste.