923 resultados para Offshore Wind Energy Conversion
Resumo:
The main goal of this work is to determine the true cost incurred by the Republic of Ireland and Northern Ireland in order to meet their EU renewable electricity targets. The primary all-island of Ireland policy goal is that 40% of electricity will come from renewable sources in 2020. From this it is expected that wind generation on the Irish electricity system will be in the region of 32-37% of total generation. This leads to issues resulting from wind energy being a non-synchronous, unpredictable and variable source of energy use on a scale never seen before for a single synchronous system. If changes are not made to traditional operational practices, the efficient running of the electricity system will be directly affected by these issues in the coming years. Using models of the electricity system for the all-island grid of Ireland, the effects of high wind energy penetration expected to be present in 2020 are examined. These models were developed using a unit commitment, economic dispatch tool called PLEXOS which allows for a detailed representation of the electricity system to be achieved down to individual generator level. These models replicate the true running of the electricity system through use of day-ahead scheduling and semi-relaxed use of these schedules that reflects the Transmission System Operator's of real time decision making on dispatch. In addition, it carefully considers other non-wind priority dispatch generation technologies that have an effect on the overall system. In the models developed, three main issues associated with wind energy integration were selected to be examined in detail to determine the sensitivity of assumptions presented in other studies. These three issues include wind energy's non-synchronous nature, its variability and spatial correlation, and its unpredictability. This leads to an examination of the effects in three areas: the need for system operation constraints required for system security; different onshore to offshore ratios of installed wind energy; and the degrees of accuracy in wind energy forecasting. Each of these areas directly impact the way in which the electricity system is run as they address each of the three issues associated with wind energy stated above, respectively. It is shown that assumptions in these three areas have a large effect on the results in terms of total generation costs, wind curtailment and generator technology type dispatch. In particular accounting for these issues has resulted in wind curtailment being predicted in much larger quantities than had been previously reported. This would have a large effect on wind energy companies because it is already a very low profit margin industry. Results from this work have shown that the relaxation of system operation constraints is crucial to the economic running of the electricity system with large improvements shown in the reduction of wind curtailment and system generation costs. There are clear benefits in having a proportion of the wind installed offshore in Ireland which would help to reduce variability of wind energy generation on the system and therefore reduce wind curtailment. With envisaged future improvements in day-ahead wind forecasting from 8% to 4% mean absolute error, there are potential reductions in wind curtailment system costs and open cycle gas turbine usage. This work illustrates the consequences of assumptions in the areas of system operation constraints, onshore/offshore installed wind capacities and accuracy in wind forecasting to better inform the true costs associated with running Ireland's changing electricity system as it continues to decarbonise into the near future. This work also proposes to illustrate, through the use of Ireland as a case study, the effects that will become ever more prevalent in other synchronous systems as they pursue a path of increasing renewable energy generation.
Resumo:
This work deals with the numerical studies on hydrodynamics of oscillating water column (OWC) wave energy converters and its damping optimization on maximizing wave energy conversion by the OWC device. As a fundamental step, the hydrodynamic problems have been systematically studied by considering the interactions of the wave-structure and of the wave-internal water surface. Our first attention is on how the hydrodynamic performance can be reliably assessed, especially when it comes to the time-domain analysis, and what the physics behind the considerations is. Further on, a damping optimization for the OWC wave energy converter is also present based on the dynamics of the linear system, and a study on how we can optimize the damping for the given sea states so that the power conversion from irregular waves from irregular waves can be maximized.
Resumo:
Offshore wind power emits low amounts of gases, is renewable and has better performance than onshore due to its greater stability and higher wind power density, less visual and noise impact, among others. Brazil has a high capacity of generation, but has not yet developed any offshore projects. High costs are a strong impediment. This study is an effort towards pricing offshore resources through Livelized Cost of Energy - LCOE, which represents the minimum return to cover the costs of development, production and maintenance of a wind project. Initially LCOE was calculated for all Brazilian onshore wind farms listed at Bloomberg New Energy Finance R○, accounting for 71 farms. Then hypothetical offshore wind farms were created from the onshore farms, tripling the cost of generation, which is consistent with the literature, and estimating the offshore energy for two locations off the Brazilian coast using satellite data extracted from National Oceanic and Atmospheric Administration. The results demonstrate that offshore resources have the potential to significantly reduce the energy price due to the better performance of the wind at sea
Resumo:
The consumption of energy on the planet is currently based on fossil fuels. They are responsible for adverse effects on the environment. Renewables propose solutions for this scenario, but must face issues related to the capacity of the power supply. Wind energy offshore emerging as a promising alternative. The speed and stability are greater winds over oceans, but the variability of these may cause inconvenience to the generation of electric power fluctuations. To reduce this, a combination of wind farms geographically distributed was proposed. The greater the distance between them, the lower the correlation between the wind velocity, increasing the likelihood that together achieve more stable power system with less fluctuations in power generation. The efficient use of production capacity of the wind park however, depends on their distribution in marine environments. The objective of this research was to analyze the optimal allocation of wind farms offshore on the east coast of the U.S. by Modern Portfolio Theory. The Modern Portfolio Theory was used so that the process of building portfolios of wind energy offshore contemplate the particularity of intermittency of wind, through calculations of return and risk of the production of wind farms. The research was conducted with 25.934 observations of energy produced by wind farms 11 hypothetical offshore, from the installation of 01 simulated ocean turbine with a capacity of 5 MW. The data show hourly time resolution and covers the period between January 1, 1998 until December 31, 2002. Through the Matlab R software, six were calculated minimum variance portfolios, each for a period of time distinct. Given the inequality of the variability of wind over time, set up four strategies rebalancing to evaluate the performance of the related portfolios, which enabled us to identify the most beneficial to the stability of the wind energy production offshore. The results showed that the production of wind energy for 1998, 1999, 2000 and 2001 should be considered by the portfolio weights calculated for the same periods, respectively. Energy data for 2002 should use the weights derived from the portfolio calculated in the previous time period. Finally, the production of wind energy in the period 1998-2002 should also be weighted by 1/11. It follows therefore that the portfolios found failed to show reduced levels of variability when compared to the individual production of wind farms hypothetical offshore
Resumo:
Offshore wind power emits low amounts of gases, is renewable and has better performance than onshore due to its greater stability and higher wind power density, less visual and noise impact, among others. Brazil has a high capacity of generation, but has not yet developed any offshore projects. High costs are a strong impediment. This study is an effort towards pricing offshore resources through Livelized Cost of Energy - LCOE, which represents the minimum return to cover the costs of development, production and maintenance of a wind project. Initially LCOE was calculated for all Brazilian onshore wind farms listed at Bloomberg New Energy Finance R○, accounting for 71 farms. Then hypothetical offshore wind farms were created from the onshore farms, tripling the cost of generation, which is consistent with the literature, and estimating the offshore energy for two locations off the Brazilian coast using satellite data extracted from National Oceanic and Atmospheric Administration. The results demonstrate that offshore resources have the potential to significantly reduce the energy price due to the better performance of the wind at sea
Resumo:
The consumption of energy on the planet is currently based on fossil fuels. They are responsible for adverse effects on the environment. Renewables propose solutions for this scenario, but must face issues related to the capacity of the power supply. Wind energy offshore emerging as a promising alternative. The speed and stability are greater winds over oceans, but the variability of these may cause inconvenience to the generation of electric power fluctuations. To reduce this, a combination of wind farms geographically distributed was proposed. The greater the distance between them, the lower the correlation between the wind velocity, increasing the likelihood that together achieve more stable power system with less fluctuations in power generation. The efficient use of production capacity of the wind park however, depends on their distribution in marine environments. The objective of this research was to analyze the optimal allocation of wind farms offshore on the east coast of the U.S. by Modern Portfolio Theory. The Modern Portfolio Theory was used so that the process of building portfolios of wind energy offshore contemplate the particularity of intermittency of wind, through calculations of return and risk of the production of wind farms. The research was conducted with 25.934 observations of energy produced by wind farms 11 hypothetical offshore, from the installation of 01 simulated ocean turbine with a capacity of 5 MW. The data show hourly time resolution and covers the period between January 1, 1998 until December 31, 2002. Through the Matlab R software, six were calculated minimum variance portfolios, each for a period of time distinct. Given the inequality of the variability of wind over time, set up four strategies rebalancing to evaluate the performance of the related portfolios, which enabled us to identify the most beneficial to the stability of the wind energy production offshore. The results showed that the production of wind energy for 1998, 1999, 2000 and 2001 should be considered by the portfolio weights calculated for the same periods, respectively. Energy data for 2002 should use the weights derived from the portfolio calculated in the previous time period. Finally, the production of wind energy in the period 1998-2002 should also be weighted by 1/11. It follows therefore that the portfolios found failed to show reduced levels of variability when compared to the individual production of wind farms hypothetical offshore
Resumo:
Stirling engines with parabolic dish for thermal to electric conversion of solar energy is one of the most promising solutions of renewable energy technologies in order to reduce the dependency from fossil fuels in electricity generation. This paper addresses the modelling and simulation of a solar powered Stirling engine system with parabolic dish and electric generator aiming to determine its energy production and efficiency. The model includes the solar radiation concentration system, the heat transfer in the ther- mal receiver, the thermal cycle and the mechanical and electric energy conversion. The thermodynamic and energy transfer processes in the engine are modelled in detail, including all the main processes occur- ring in the compression, expansion and regenerator spaces. Starting from a particular configuration, an optimization of the concentration factor is also carried out and the results for both the transient and steady state regimes are presented. It was found that using a directly illuminated thermal receiver with- out cavity the engine efficiency is close to 23.8% corresponding to a global efficiency of 10.4%. The com- ponents to be optimized are identified in order to increase the global efficiency of the system and the trade-off between system complexity and efficiency is discussed.
Resumo:
This paper presents a stochastic mixed-integer linear programming approach for solving the self-scheduling problem of a price-taker thermal and wind power producer taking part in a pool-based electricity market. Uncertainty on electricity price and wind power is considered through a set of scenarios. Thermal units are modelled by variable costs, start-up costs and technical operating constraints, such as: forbidden operating zones, ramp up/down limits and minimum up/down time limits. An efficient mixed-integer linear program is presented to develop the offering strategies of the coordinated production of thermal and wind energy generation, having as a goal the maximization of profit. A case study with data from the Iberian Electricity Market is presented and results are discussed to show the effectiveness of the proposed approach.
Resumo:
In the last few decades, offshore field has grown fast especially after the notable development of technologies, explorations of oil and gas in deep water and the high concern of offshore companies in renewable energy mainly Wind Energy. Fatigue damage was noticed as one of the main problems causing failure of offshore structures. The purpose of this research is to focus on the evaluation of Stress Concentration Factor and its influence on Fatigue Life for 2 tubular KT-Joints in offshore Jacket structure using different calculation methods. The work is done by using analytical calculations, mainly Efthymiou’s formulations, and numerical solutions, FEM analysis, using ABAQUS software. As for the analytical formulations, the calculations were done according to the geometrical parameters of each method using excel sheets. As for the numerical model, 2 different types of tubular KT-Joints are present where for each model 5 shell element type, 3 solid element type and 3 solid-with-weld element type models were built on ABAQUS. Meshing was assigned according to International Institute of Welding (IIW) recommendations, 5 types of mesh element, to evaluate the Hot-spot stresses. 23 different types of unitary loading conditions were assigned, 9 axial, 7 in-plane bending moment and 7 out-plane bending moment loads. The extraction of Hot-spot stresses and the evaluation of the Stress Concentration Factor were done using PYTHON scripting and MATLAB. Then, the fatigue damage evaluation for a critical KT tubular joint based on Simplified Fatigue Damage Rule and Local Approaches (Strain Damage Parameter and Stress Damage Parameter) methods were calculated according to the maximum Stress Concentration Factor conducted from DNV and FEA methods. In conclusion, this research helped us to compare different results of Stress Concentration Factor and Fatigue Life using different methods and provided us with a general overview about what to study next in the future.
Resumo:
The exploitation of hydrocarbon reservoirs by the oil and gas industries represents one of the most relevant and concerning anthropic stressor in various marine areas worldwide and the presence of extractive structures can have severe consequences on the marine environment. Environmental monitoring surveys are carried out to monitor the effects and impacts of offshore energy facilities. Macrobenthic communities, inhabiting the soft-bottom, represent a key component of these surveys given their great responsiveness to natural and anthropic changes. A comprehensive collection of monitoring data from four Italian seas was used to investigate distributional pattern of macrozoobenthos assemblages confirming a high spatial variability in relation to the environmental variables analyzed. Since these datasets could represent a powerful tool for the industrial and scientific research, the steps and standardized procedures needed to obtain robust and comparable high-quality data were investigated and outlined. Over recent years, decommissioning of old platforms is a growing topic in this sector, involving many actors in the various decision-making processes. A Multi-Criteria Decision Analysis, specific for the Adriatic Sea, was developed to investigate the impacts of decommissioning of a gas platform on environmental and socio-economic aspects, to select the best decommissioning scenario. From the scenarios studied, the most impacting one has resulted to be total removal, affecting all the faunal component considered in the study. Currently, the European nations are increasing the production of energy from offshore wind farms with an exponential expansion. A comparative study of methodologies used five countries of the North Sea countries was carried out to investigate the best approaches to monitor the effects of wind farms on the benthic communities. In the foreseeable future, collaboration between industry, scientific communities, national and international policies are needed to gain knowledge concerning the effects of these industrial activities on the ecological status of the ecosystems.
Resumo:
In recent years, developed countries have turned their attention to clean and renewable energy, such as wind energy and wave energy that can be converted to electrical power. Companies and academic groups worldwide are investigating several wave energy ideas today. Accordingly, this thesis studies the numerical simulation of the dynamic response of the wave energy converters (WECs) subjected to the ocean waves. This study considers a two-body point absorber (2BPA) and an oscillating surge wave energy converter (OSWEC). The first aim is to mesh the bodies of the earlier mentioned WECs to calculate their hydrostatic properties using axiMesh.m and Mesh.m functions provided by NEMOH. The second aim is to calculate the first-order hydrodynamic coefficients of the WECs using the NEMOH BEM solver and to study the ability of this method to eliminate irregular frequencies. The third is to generate a *.h5 file for 2BPA and OSWEC devices, in which all the hydrodynamic data are included. The BEMIO, a pre-and post-processing tool developed by WEC-Sim, is used in this study to create *.h5 files. The primary and final goal is to run the wave energy converter Simulator (WEC-Sim) to simulate the dynamic responses of WECs studied in this thesis and estimate their power performance at different sites located in the Mediterranean Sea and the North Sea. The hydrodynamic data obtained by the NEMOH BEM solver for the 2BPA and OSWEC devices studied in this thesis is imported to WEC-Sim using BEMIO. Lastly, the power matrices and annual energy production (AEP) of WECs are estimated for different sites located in the Sea of Sicily, Sea of Sardinia, Adriatic Sea, Tyrrhenian Sea, and the North Sea. To this end, the NEMOH and WEC-Sim are still the most practical tools to estimate the power generation of WECs numerically.
Resumo:
Converting aeroelastic vibrations into electricity for low power generation has received growing attention over the past few years. In addition to potential applications for aerospace structures, the goal is to develop alternative and scalable configurations for wind energy harvesting to use in wireless electronic systems. This paper presents modeling and experiments of aeroelastic energy harvesting using piezoelectric transduction with a focus on exploiting combined nonlinearities. An airfoil with plunge and pitch degrees of freedom (DOF) is investigated. Piezoelectric coupling is introduced to the plunge DOF while nonlinearities are introduced through the pitch DOF. A state-space model is presented and employed for the simulations of the piezoaeroelastic generator. A two-state approximation to Theodorsen aerodynamics is used in order to determine the unsteady aerodynamic loads. Three case studies are presented. First the interaction between piezoelectric power generation and linear aeroelastic behavior of a typical section is investigated for a set of resistive loads. Model predictions are compared to experimental data obtained from the wind tunnel tests at the flutter boundary. In the second case study, free play nonlinearity is added to the pitch DOF and it is shown that nonlinear limit-cycle oscillations can be obtained not only above but also below the linear flutter speed. The experimental results are successfully predicted by the model simulations. Finally, the combination of cubic hardening stiffness and free play nonlinearities is considered in the pitch DOF. The nonlinear piezoaeroelastic response is investigated for different values of the nonlinear-to-linear stiffness ratio. The free play nonlinearity reduces the cut-in speed while the hardening stiffness helps in obtaining persistent oscillations of acceptable amplitude over a wider range of airflow speeds. Such nonlinearities can be introduced to aeroelastic energy harvesters (exploiting piezoelectric or other transduction mechanisms) for performance enhancement.
Resumo:
A solar energy powered failing film evaporator with film promoter was developed for concentrating diluted solutions (industrial effluents). The procedure proposed here does not emit CO(2), making it a viable alternative to the method of concentrating solutions that uses vapor as a heat source and releases CO(2) from burning fuel oil in a furnace, in direct opposition to the carbon reduction agreement established by the Kyoto protocol. This novel device consists of the following components: a flat plate solar collector with adjustable inclination, a film promoter (adhering to the collector), a liquid distributor, a concentrate collector. and accessories. The evaporation rate of the device was found to be affected both by the inclination of the collector and by the feed flow. The meteorological variables cannot be controlled, but were monitored constantly to ascertain the behavior of the equipment in response to the variations occurring throughout the day. Higher efficiencies were attained when the inclination of the collector was adjusted monthly, showing up to 36.4% higher values than when the collector remained in a fixed position. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, two wind turbines equipped with a permanent magnet synchronous generator (PMSG) and respectively with a two-level or a multilevel converter are simulated in order to access the malfunction transient performance. Three different drive train mass models, respectively, one, two and three mass models, are considered in order to model the bending flexibility of the blades. Moreover, a fractional-order control strategy is studied comparatively to a classical integer-order control strategy. Computer simulations are carried out, and conclusions about the total harmonic distortion (THD) of the electric current injected into the electric grid are in favor of the fractional-order control strategy.
Resumo:
Power converters play a vital role in the integration of wind power into the electrical grid. Variable-speed wind turbine generator systems have a considerable interest of application for grid connection at constant frequency. In this paper, comprehensive simulation studies are carried out with three power converter topologies: matrix, two-level and multilevel. A fractional-order control strategy is studied for the variable-speed operation of wind turbine generator systems. The studies are in order to compare power converter topologies and control strategies. The studies reveal that the multilevel converter and the proposed fractional-order control strategy enable an improvement in the power quality, in comparison with the other power converters using a classical integer-order control strategy. (C) 2010 Elsevier Ltd. All rights reserved.