820 resultados para Occupant Trajectory.
Resumo:
The anticipated growth of air traffic worldwide requires enhanced Air Traffic Management (ATM) technologies and procedures to increase the system capacity, efficiency, and resilience, while reducing environmental impact and maintaining operational safety. To deal with these challenges, new automation and information exchange capabilities are being developed through different modernisation initiatives toward a new global operational concept called Trajectory Based Operations (TBO), in which aircraft trajectory information becomes the cornerstone of advanced ATM applications. This transformation will lead to higher levels of system complexity requiring enhanced Decision Support Tools (DST) to aid humans in the decision making processes. These will rely on accurate predicted aircraft trajectories, provided by advanced Trajectory Predictors (TP). The trajectory prediction process is subject to stochastic effects that introduce uncertainty into the predictions. Regardless of the assumptions that define the aircraft motion model underpinning the TP, deviations between predicted and actual trajectories are unavoidable. This thesis proposes an innovative method to characterise the uncertainty associated with a trajectory prediction based on the mathematical theory of Polynomial Chaos Expansions (PCE). Assuming univariate PCEs of the trajectory prediction inputs, the method describes how to generate multivariate PCEs of the prediction outputs that quantify their associated uncertainty. Arbitrary PCE (aPCE) was chosen because it allows a higher degree of flexibility to model input uncertainty. The obtained polynomial description can be used in subsequent prediction sensitivity analyses thanks to the relationship between polynomial coefficients and Sobol indices. The Sobol indices enable ranking the input parameters according to their influence on trajectory prediction uncertainty. The applicability of the aPCE-based uncertainty quantification detailed herein is analysed through a study case. This study case represents a typical aircraft trajectory prediction problem in ATM, in which uncertain parameters regarding aircraft performance, aircraft intent description, weather forecast, and initial conditions are considered simultaneously. Numerical results are compared to those obtained from a Monte Carlo simulation, demonstrating the advantages of the proposed method. The thesis includes two examples of DSTs (Demand and Capacity Balancing tool, and Arrival Manager) to illustrate the potential benefits of exploiting the proposed uncertainty quantification method.
Resumo:
In designing the trajectory for a multiple flyby mission to asteroids the choice of the targets is the most challenging problem. This dissertation faces this problem in the framework of the recently issued medium-size mission call (M5) from ESA: CASTAway. Starting from the preliminary work done in [6], this thesis develops a methodology for sequencing the potential targets in a multiple flyby mission. In order to reduce the computational time, the complete database of known small bodies is firstly pruned on the base of heuristic considerations. Using the assumption of small manoeuvres, a chief orbit concept could be used. Thus, two heuristic thresholds are defined in order to exclude non-promising targets given a chief orbit. The sequencing process takes chief orbit and promising targets as inputs and gives a set of candidate sequences. The results of such a process are analysed in the CASTAway framework and the best feasible sequence studied in details.
Resumo:
In recent years, there has been an enormous growth of location-aware devices, such as GPS embedded cell phones, mobile sensors and radio-frequency identification tags. The age of combining sensing, processing and communication in one device, gives rise to a vast number of applications leading to endless possibilities and a realization of mobile Wireless Sensor Network (mWSN) applications. As computing, sensing and communication become more ubiquitous, trajectory privacy becomes a critical piece of information and an important factor for commercial success. While on the move, sensor nodes continuously transmit data streams of sensed values and spatiotemporal information, known as ``trajectory information". If adversaries can intercept this information, they can monitor the trajectory path and capture the location of the source node. This research stems from the recognition that the wide applicability of mWSNs will remain elusive unless a trajectory privacy preservation mechanism is developed. The outcome seeks to lay a firm foundation in the field of trajectory privacy preservation in mWSNs against external and internal trajectory privacy attacks. First, to prevent external attacks, we particularly investigated a context-based trajectory privacy-aware routing protocol to prevent the eavesdropping attack. Traditional shortest-path oriented routing algorithms give adversaries the possibility to locate the target node in a certain area. We designed the novel privacy-aware routing phase and utilized the trajectory dissimilarity between mobile nodes to mislead adversaries about the location where the message started its journey. Second, to detect internal attacks, we developed a software-based attestation solution to detect compromised nodes. We created the dynamic attestation node chain among neighboring nodes to examine the memory checksum of suspicious nodes. The computation time for memory traversal had been improved compared to the previous work. Finally, we revisited the trust issue in trajectory privacy preservation mechanism designs. We used Bayesian game theory to model and analyze cooperative, selfish and malicious nodes' behaviors in trajectory privacy preservation activities.
Resumo:
This Thesis studies the optimal control problem of single-arm and dual-arm serial robots to achieve the time-optimal handling of liquids and objects. The first topic deals with the planning of time-optimal anti-sloshing trajectories of an industrial robot carrying a cylindrical container filled with a liquid, considering 1-dimensional and 2-dimensional planar motions. A technique for the estimation of the sloshing height is presented, together with its extension to 3-dimensional motions. An experimental validation campaign is provided and discussed to assess the thoroughness of such a technique. As far as anti-sloshing trajectories are concerned, 2-dimensional paths are considered and, for each one of them, three constrained optimizations with different values of the sloshing-height thresholds are solved. Experimental results are presented to compare optimized and non-optimized motions. The second part focuses on the time-optimal trajectory planning for dual-arm object handling, employing two collaborative robots (cobots) and adopting an admittance-control strategy. The chosen manipulation approach, known as cooperative grasping, is based on unilateral contact between the cobots and the object, and it may lead to slipping during motion if an internal prestress along the contact-normal direction is not prescribed. Thus, a virtual penetration is considered, aimed at generating the necessary internal prestress. The stability of cooperative grasping is ensured as long as the exerted forces on the object remain inside the static-friction cone. Constrained-optimization problems are solved for 3-dimensional paths: the virtual penetration is chosen among the control inputs of the problem and friction-cone conditions are treated as inequality constraints. Also in this case experiments are presented in order to prove evidence of the firm handling of the object, even for fast motions.
Resumo:
This thesis is focused on the design of a flexible, dynamic and innovative telecommunication's system for future 6G applications on vehicular communications. The system is based on the development of drones acting as mobile base stations in an urban scenario to cope with the increasing traffic demand and avoid network's congestion conditions. In particular, the exploitation of Reinforcement Learning algorithms is used to let the drone learn autonomously how to behave in a scenario full of obstacles with the goal of tracking and serve the maximum number of moving vehicles, by at the same time, minimizing the energy consumed to perform its tasks. This project is an extraordinary opportunity to open the doors to a new way of applying and develop telecommunications in an urban scenario by mixing it to the rising world of the Artificial Intelligence.
Resumo:
In the recent years, autonomous aerial vehicles gained large popularity in a variety of applications in the field of automation. To accomplish various and challenging tasks the capability of generating trajectories has assumed a key role. As higher performances are sought, traditional, flatness-based trajectory generation schemes present their limitations. In these approaches the highly nonlinear dynamics of the quadrotor is, indeed, neglected. Therefore, strategies based on optimal control principles turn out to be beneficial, since in the trajectory generation process they allow the control unit to best exploit the actual dynamics, and enable the drone to perform quite aggressive maneuvers. This dissertation is then concerned with the development of an optimal control technique to generate trajectories for autonomous drones. The algorithm adopted to this end is a second-order iterative method working directly in continuous-time, which, under proper initialization, guarantees quadratic convergence to a locally optimal trajectory. At each iteration a quadratic approximation of the cost functional is minimized and a decreasing direction is then obtained as a linear-affine control law, after solving a differential Riccati equation. The algorithm has been implemented and its effectiveness has been tested on the vectored-thrust dynamical model of a quadrotor in a realistic simulative setup.
Resumo:
This article analyzes Boys in white: student culture in medical schoolby Howard S. Becker, Blanche Geer, Everett C. Hughes and Anselm Strauss, considered a model of qualitative research in sociology. The analysis investigates the trajectories of the authors, the book, qualitative analysis, and the medical students, emphasizing their importance in the origins of medical sociology and the sociology of medical education. In the trajectory of the authors, bibliographical information is given. The trajectory of qualitative research focuses on how this methodology influences the construction of the field. The investigation of the students' trajectory shows how they progress through their first years at medical school to build their own student culture.
Resumo:
This paper analyses some aspects of the trajectory of the Argentinian physician and sociologist Juan César García (1932-1984) in the field of Latin American Social Medicine. Three dimensions constituting his basic orientations are highlighted: the elaboration of systematic and reflective social thought; a critical attitude in questioning teaching and professional practices; a commitment to the institutionalization and dissemination of health knowledge.
Resumo:
This article deals with the theme of teacher training from the historical and theoretical perspectives. In the first part, the historical focus is introduced and the trajectory of teacher training in Brazil is examined, dividing it into six periods beginning with the passing of the Law of Schools of First Letters in 1827 and closing with the promulgation of the new law for national education in 1996. The second part deals with theoretical aspects, considering the two basic models of teacher training, their implications for the training of teachers of primary and pre-school education, the dilemma resulting from the contraposition between the two models and the way for overcoming it and concluding with observations on the training of teachers for special education.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física