966 resultados para Object vision


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computer vision is much more than a technique to sense and recover environmental information from an UAV. It should play a main role regarding UAVs’ functionality because of the big amount of information that can be extracted, its possible uses and applications, and its natural connection to human driven tasks, taking into account that vision is our main interface to world understanding. Our current research’s focus lays on the development of techniques that allow UAVs to maneuver in spaces using visual information as their main input source. This task involves the creation of techniques that allow an UAV to maneuver towards features of interest whenever a GPS signal is not reliable or sufficient, e.g. when signal dropouts occur (which usually happens in urban areas, when flying through terrestrial urban canyons or when operating on remote planetary bodies), or when tracking or inspecting visual targets—including moving ones—without knowing their exact UMT coordinates. This paper also investigates visual serving control techniques that use velocity and position of suitable image features to compute the references for flight control. This paper aims to give a global view of the main aspects related to the research field of computer vision for UAVs, clustered in four main active research lines: visual serving and control, stereo-based visual navigation, image processing algorithms for detection and tracking, and visual SLAM. Finally, the results of applying these techniques in several applications are presented and discussed: this study will encompass power line inspection, mobile target tracking, stereo distance estimation, mapping and positioning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: All currently considered parametric models used for decomposing videokeratoscopy height data are viewercentered and hence describe what the operator sees rather than what the surface is. The purpose of this study was to ascertain the applicability of an object-centered representation to modeling of corneal surfaces. Methods: A three-dimensional surface decomposition into a series of spherical harmonics is considered and compared with the traditional Zernike polynomial expansion for a range of videokeratoscopic height data. Results: Spherical harmonic decomposition led to significantly better fits to corneal surfaces (in terms of the root mean square error values) than the corresponding Zernike polynomial expansions with the same number of coefficients, for all considered corneal surfaces, corneal diameters, and model orders. Conclusions: Spherical harmonic decomposition is a viable alternative to Zernike polynomial decomposition. It achieves better fits to videokeratoscopic height data and has the advantage of an object-centered representation that could be particularly suited to the analysis of multiple corneal measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mainstream business process modelling techniques promote a design paradigm wherein the activities to be performed within a case, together with their usual execution order, form the backbone of a process model, on top of which other aspects are anchored. This paradigm, while eective in standardised and production-oriented domains, shows some limitations when confronted with processes where case-by-case variations and exceptions are the norm. In this thesis we develop the idea that the eective design of exible process models calls for an alternative modelling paradigm, one in which process models are modularised along key business objects, rather than along activity decompositions. The research follows a design science method, starting from the formulation of a research problem expressed in terms of requirements, and culminating in a set of artifacts that have been devised to satisfy these requirements. The main contributions of the thesis are: (i) a meta-model for object-centric process modelling incorporating constructs for capturing exible processes; (ii) a transformation from this meta-model to an existing activity-centric process modelling language, namely YAWL, showing the relation between object-centric and activity-centric process modelling approaches; and (iii) a Coloured Petri Net that captures the semantics of the proposed meta-model. The meta-model has been evaluated using a framework consisting of a set of work ow patterns. Moreover, the meta-model has been embodied in a modelling tool that has been used to capture two industrial scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Computer vision has been widely used in the inspection of electronic components. This paper proposes a computer vision system for the automatic detection, localisation, and segmentation of solder joints on Printed Circuit Boards (PCBs) under different illumination conditions. Design/methodology/approach: An illumination normalization approach is applied to an image, which can effectively and efficiently eliminate the effect of uneven illumination while keeping the properties of the processed image the same as in the corresponding image under normal lighting conditions. Consequently special lighting and instrumental setup can be reduced in order to detect solder joints. These normalised images are insensitive to illumination variations and are used for the subsequent solder joint detection stages. In the segmentation approach, the PCB image is transformed from an RGB color space to a YIQ color space for the effective detection of solder joints from the background. Findings: The segmentation results show that the proposed approach improves the performance significantly for images under varying illumination conditions. Research limitations/implications: This paper proposes a front-end system for the automatic detection, localisation, and segmentation of solder joint defects. Further research is required to complete the full system including the classification of solder joint defects. Practical implications: The methodology presented in this paper can be an effective method to reduce cost and improve quality in production of PCBs in the manufacturing industry. Originality/value: This research proposes the automatic location, identification and segmentation of solder joints under different illumination conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many surveillance applications (object tracking, abandoned object detection) rely on detecting changes in a scene. Foreground segmentation is an effective way to extract the foreground from the scene, but these techniques cannot discriminate between objects that have temporarily stopped and those that are moving. We propose a series of modifications to an existing foreground segmentation system\cite{Butler2003} so that the foreground is further segmented into two or more layers. This yields an active layer of objects currently in motion and a passive layer of objects that have temporarily ceased motion which can itself be decomposed into multiple static layers. We also propose a variable threshold to cope with variable illumination, a feedback mechanism that allows an external process (i.e. surveillance system) to alter the motion detectors state, and a lighting compensation process and a shadow detector to reduce errors caused by lighting inconsistencies. The technique is demonstrated using outdoor surveillance footage, and is shown to be able to effectively deal with real world lighting conditions and overlapping objects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surveillance and tracking systems typically use a single colour modality for their input. These systems work well in controlled conditions but often fail with low lighting, shadowing, smoke, dust, unstable backgrounds or when the foreground object is of similar colouring to the background. With advances in technology and manufacturing techniques, sensors that allow us to see into the thermal infrared spectrum are becoming more affordable. By using modalities from both the visible and thermal infrared spectra, we are able to obtain more information from a scene and overcome the problems associated with using visible light only for surveillance and tracking. Thermal images are not affected by lighting or shadowing and are not overtly affected by smoke, dust or unstable backgrounds. We propose and evaluate three approaches for fusing visual and thermal images for person tracking. We also propose a modified condensation filter to track and aid in the fusion of the modalities. We compare the proposed fusion schemes with using the visual and thermal domains on their own, and demonstrate that significant improvements can be achieved by using multiple modalities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surveillance systems such as object tracking and abandoned object detection systems typically rely on a single modality of colour video for their input. These systems work well in controlled conditions but often fail when low lighting, shadowing, smoke, dust or unstable backgrounds are present, or when the objects of interest are a similar colour to the background. Thermal images are not affected by lighting changes or shadowing, and are not overtly affected by smoke, dust or unstable backgrounds. However, thermal images lack colour information which makes distinguishing between different people or objects of interest within the same scene difficult. ----- By using modalities from both the visible and thermal infrared spectra, we are able to obtain more information from a scene and overcome the problems associated with using either modality individually. We evaluate four approaches for fusing visual and thermal images for use in a person tracking system (two early fusion methods, one mid fusion and one late fusion method), in order to determine the most appropriate method for fusing multiple modalities. We also evaluate two of these approaches for use in abandoned object detection, and propose an abandoned object detection routine that utilises multiple modalities. To aid in the tracking and fusion of the modalities we propose a modified condensation filter that can dynamically change the particle count and features used according to the needs of the system. ----- We compare tracking and abandoned object detection performance for the proposed fusion schemes and the visual and thermal domains on their own. Testing is conducted using the OTCBVS database to evaluate object tracking, and data captured in-house to evaluate the abandoned object detection. Our results show that significant improvement can be achieved, and that a middle fusion scheme is most effective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soft biometrics are characteristics that can be used to describe, but not uniquely identify an individual. These include traits such as height, weight, gender, hair, skin and clothing colour. Unlike traditional biometrics (i.e. face, voice) which require cooperation from the subject, soft biometrics can be acquired by surveillance cameras at range without any user cooperation. Whilst these traits cannot provide robust authentication, they can be used to provide coarse authentication or identification at long range, locate a subject who has been previously seen or who matches a description, as well as aid in object tracking. In this paper we propose three part (head, torso, legs) height and colour soft biometric models, and demonstrate their verification performance on a subset of the PETS 2006 database. We show that these models, whilst not as accurate as traditional biometrics, can still achieve acceptable rates of accuracy in situations where traditional biometrics cannot be applied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern computer graphics systems are able to construct renderings of such high quality that viewers are deceived into regarding the images as coming from a photographic source. Large amounts of computing resources are expended in this rendering process, using complex mathematical models of lighting and shading. However, psychophysical experiments have revealed that viewers only regard certain informative regions within a presented image. Furthermore, it has been shown that these visually important regions contain low-level visual feature differences that attract the attention of the viewer. This thesis will present a new approach to image synthesis that exploits these experimental findings by modulating the spatial quality of image regions by their visual importance. Efficiency gains are therefore reaped, without sacrificing much of the perceived quality of the image. Two tasks must be undertaken to achieve this goal. Firstly, the design of an appropriate region-based model of visual importance, and secondly, the modification of progressive rendering techniques to effect an importance-based rendering approach. A rule-based fuzzy logic model is presented that computes, using spatial feature differences, the relative visual importance of regions in an image. This model improves upon previous work by incorporating threshold effects induced by global feature difference distributions and by using texture concentration measures. A modified approach to progressive ray-tracing is also presented. This new approach uses the visual importance model to guide the progressive refinement of an image. In addition, this concept of visual importance has been incorporated into supersampling, texture mapping and computer animation techniques. Experimental results are presented, illustrating the efficiency gains reaped from using this method of progressive rendering. This visual importance-based rendering approach is expected to have applications in the entertainment industry, where image fidelity may be sacrificed for efficiency purposes, as long as the overall visual impression of the scene is maintained. Different aspects of the approach should find many other applications in image compression, image retrieval, progressive data transmission and active robotic vision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Students often read for long periods and prolonged reading practice may be important for developing reading skills. For students with low vision, reading at a close working distance imposes high demands on their near visual functions, which might make it difficult to sustain prolonged reading. The aim of this study was to investigate the performance of a prolonged reading task by students with low vision. Method: Forty students with low vision, aged from eight to 20 years and without any intellectual, reading or learning disability, were recruited through the Paediatric Low Vision Clinic, Buranda, Queensland. Following a preliminary vision examination, reading performance measures—critical print size (CPS), maximum oral reading rates (MORR), near text visual acuity— were recorded using the Bailey-Lovie text reading charts before and after a 30-minute prolonged reading task. Results: The mean age of the participants was 13.03 ± 3 years. The distance and near visual acuities ranged between -0.1 to 1.24 logMAR and 0.0 to 1.60 logMAR, respectively. The mean working distance of the participants was 11.2 ± 5.8 cm. Most of the participants (65 per cent) in this study were able to complete the prolonged reading task. Overall, there was no significant change in CPS, MORR and near text visual acuity following the prolonged task (p > 0.05). MORR was significantly correlated to age and near text visual acuity (p < 0.05). Conclusions: In this study, students with low vision were able to maintain their reading performance over a 30-minute prolonged reading task. Overall, there was no significant increase or decrease in reading performance following a prolonged reading task performed at their habitual close working distances but there were wide individual variations within the group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Students with low vision may be disadvantaged when compared with their normally sighted peers, as they frequently work at very short working distances and need to use low vision devices. The aim of this study was to examine the sustained reading rates of students with low vision and compare them with their peers with normal vision. The effects of visual acuity, acuity reserve and age on reading rate were also examined. Method: Fifty-six students (10 to 16 years of age), 26 with low vision and 30 with normal vision were required to read text continuously for 30 minutes. Their position in the text was recorded at two-minute intervals. Distance and near visual acuity, working distance, cause of low vision, reading rates and reading habits were recorded. Results: A total of 80.7 per cent of the students with low vision maintained a constant reading rate during the 30 minutes of reading, although they read at approximately half the rate (104 wpm) compared with their normally sighted peers (195 wpm). Only four of the low vision subjects could not complete the reading task. Reading rates increased significantly with acuity reserve and distance and near visual acuity but there was no significant relationship between age and sustained reading rate. Conclusions: The majority of students with low vision were able to maintain appropriate reading rates to cope in integrated educational settings. Surprisingly only relatively few subjects (16 per cent) used their prescribed low vision devices even though the average accommodative demand was 9 D and generally, they revealed a greater dislike of reading compared to students with normal vision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To ascertain the effectiveness of object-centered three-dimensional representations for the modeling of corneal surfaces. Methods: Three-dimensional (3D) surface decomposition into series of basis functions including: (i) spherical harmonics, (ii) hemispherical harmonics, and (iii) 3D Zernike polynomials were considered and compared to the traditional viewer-centered representation of two-dimensional (2D) Zernike polynomial expansion for a range of retrospective videokeratoscopic height data from three clinical groups. The data were collected using the Medmont E300 videokeratoscope. The groups included 10 normal corneas with corneal astigmatism less than −0.75 D, 10 astigmatic corneas with corneal astigmatism between −1.07 D and 3.34 D (Mean = −1.83 D, SD = ±0.75 D), and 10 keratoconic corneas. Only data from the right eyes of the subjects were considered. Results: All object-centered decompositions led to significantly better fits to corneal surfaces (in terms of the RMS error values) than the corresponding 2D Zernike polynomial expansions with the same number of coefficients, for all considered corneal surfaces, corneal diameters (2, 4, 6, and 8 mm), and model orders (4th to 10th radial orders) The best results (smallest RMS fit error) were obtained with spherical harmonics decomposition which lead to about 22% reduction in the RMS fit error, as compared to the traditional 2D Zernike polynomials. Hemispherical harmonics and the 3D Zernike polynomials reduced the RMS fit error by about 15% and 12%, respectively. Larger reduction in RMS fit error was achieved for smaller corneral diameters and lower order fits. Conclusions: Object-centered 3D decompositions provide viable alternatives to traditional viewer-centered 2D Zernike polynomial expansion of a corneal surface. They achieve better fits to videokeratoscopic height data and could be particularly suited to the analysis of multiple corneal measurements, where there can be slight variations in the position of the cornea from one map acquisition to the next.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the emergence of multi-cores into the mainstream, there is a growing need for systems to allow programmers and automated systems to reason about data dependencies and inherent parallelismin imperative object-oriented languages. In this paper we exploit the structure of object-oriented programs to abstract computational side-effects. We capture and validate these effects using a static type system. We use these as the basis of sufficient conditions for several different data and task parallelism patterns. We compliment our static type system with a lightweight runtime system to allow for parallelization in the presence of complex data flows. We have a functioning compiler and worked examples to demonstrate the practicality of our solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identifying an individual from surveillance video is a difficult, time consuming and labour intensive process. The proposed system aims to streamline this process by filtering out unwanted scenes and enhancing an individual's face through super-resolution. An automatic face recognition system is then used to identify the subject or present the human operator with likely matches from a database. A person tracker is used to speed up the subject detection and super-resolution process by tracking moving subjects and cropping a region of interest around the subject's face to reduce the number and size of the image frames to be super-resolved respectively. In this paper, experiments have been conducted to demonstrate how the optical flow super-resolution method used improves surveillance imagery for visual inspection as well as automatic face recognition on an Eigenface and Elastic Bunch Graph Matching system. The optical flow based method has also been benchmarked against the ``hallucination'' algorithm, interpolation methods and the original low-resolution images. Results show that both super-resolution algorithms improved recognition rates significantly. Although the hallucination method resulted in slightly higher recognition rates, the optical flow method produced less artifacts and more visually correct images suitable for human consumption.