943 resultados para Obesity. Cardiopulmonary exercise test. uptake oxygen. incremental test
Resumo:
Abstract Background: Prolonged aerobic exercise, such as running a marathon, produces supraphysiological stress that can affect the athlete's homeostasis. Some degree of transient myocardial dysfunction ("cardiac fatigue") can be observed for several days after the race. Objective: To verify if there are changes in the cardiopulmonary capacity, and cardiac inotropy and lusitropy in amateur marathoners after running a marathon. Methods: The sample comprised 6 male amateur runners. All of them underwent cardiopulmonary exercise testing (CPET) one week before the São Paulo Marathon, and 3 to 4 days after that race. They underwent echocardiography 24 hours prior to and immediately after the marathon. All subjects were instructed not to exercise, to maintain their regular diet, ingest the same usual amount of liquids, and rest at least 8 hours a day in the period preceding the CPET. Results: The athletes completed the marathon in 221.5 (207; 250) minutes. In the post-marathon CPET, there was a significant reduction in peak oxygen consumption and peak oxygen pulse compared to the results obtained before the race (50.75 and 46.35 mL.kg-1 .min-1; 19.4 and 18.1 mL.btm, respectively). The echocardiography showed a significant reduction in the s' wave (inotropic marker), but no significant change in the E/e' ratio (lusitropic marker). Conclusions: In amateur runners, the marathon seems to promote changes in the cardiopulmonary capacity identified within 4 days after the race, with a reduction in the cardiac contractility. Such changes suggest that some degree of "cardiac fatigue" can occur.
Resumo:
The aim of this study was to determine whether breath 13CO2 measurements could be used to assess the compliance to a diet containing carbohydrates naturally enriched in 13C. The study was divided into two periods: Period 1 (baseline of 4 days) with low 13C/12C ratio carbohydrates. Period 2 (5 days) isocaloric diet with a high 13C/12C ratio (corn, cane sugar, pineapple, millet) carbohydrates. Measurements were made of respiratory gas exchange by indirect calorimetry, urinary nitrogen excretion and breath 13CO2 every morning in post-absorptive conditions, both in resting state and during a 45-min low intensity exercise (walking on a treadmill). The subjects were 10 healthy lean women (BMI 20.4 +/- 1.7 kg/m2, % body fat 24.4 +/- 1.3%), the 13C enrichment of oxidized carbohydrate and breath 13CO2 were compared to the enrichment of exogenous dietary carbohydrates. At rest the enrichment of oxidized carbohydrate increased significantly after one day of 13C carbohydrate enriched diet and reached a steady value (103 +/- 16%) similar to the enrichment of exogenous carbohydrates. During exercise, the 13C enrichment of oxidized carbohydrate remained significantly lower (68 +/- 17%) than that of dietary carbohydrates. The compliance to a diet with a high content of carbohydrates naturally enriched in 13C may be assessed from the measurement of breath 13CO2 enrichment combined with respiratory gas exchange in resting, postabsorptive conditions.
Resumo:
BACKGROUND: Conventional therapy with beta-blockers is incompletely effective in preventing arrhythmic events in patients with catecholaminergic polymorphic ventricular tachycardia (CPVT). We have previously discovered that flecainide in addition to conventional drug therapy prevents ventricular arrhythmias in patients with genotype-positive CPVT. OBJECTIVE: To study the efficacy of flecainide in patients with genotype-negative CPVT. METHODS: We studied the efficacy of flecainide for reducing ventricular arrhythmias during exercise testing and preventing arrhythmia events during long-term follow-up. RESULTS: Twelve patients with genotype-negative CPVT were treated with flecainide. Conventional therapy failed to control ventricular arrhythmias in all patients. Flecainide was initiated because of significant ventricular arrhythmias (n = 8), syncope (n = 3), or cardiac arrest (n = 1). At the baseline exercise test before flecainide, 6 patients had ventricular tachycardia and 5 patients had bigeminal or frequent ventricular premature beats. Flecainide reduced ventricular arrhythmias at the exercise test in 8 patients compared to conventional therapy, similar to that in patients with genotype-positive CPVT in our previous report. Notably, flecainide completely prevented ventricular arrhythmias in 7 patients. Flecainide was continued in all patients except for one who had ventricular tachycardia at the exercise test on flecainide. During a follow-up of 48±94 months, arrhythmia events (sudden cardiac death and aborted cardiac arrest) associated with noncompliance occurred in 2 patients. Flecainide was not discontinued owing to side effects in any of the patients. CONCLUSIONS: Flecainide was effective in patients with genotype-negative CPVT, suggesting that spontaneous Ca(2+) release from ryanodine channels plays a role in arrhythmia susceptibility, similar to that in patients with genotype-positive CPVT.
Resumo:
The purpose of this review was to provide a synopsis of the literature concerning the physiological differences between cycling and running. By comparing physiological variables such as maximal oxygen consumption (V O(2max)), anaerobic threshold (AT), heart rate, economy or delta efficiency measured in cycling and running in triathletes, runners or cyclists, this review aims to identify the effects of exercise modality on the underlying mechanisms (ventilatory responses, blood flow, muscle oxidative capacity, peripheral innervation and neuromuscular fatigue) of adaptation. The majority of studies indicate that runners achieve a higher V O(2max) on treadmill whereas cyclists can achieve a V O(2max) value in cycle ergometry similar to that in treadmill running. Hence, V O(2max) is specific to the exercise modality. In addition, the muscles adapt specifically to a given exercise task over a period of time, resulting in an improvement in submaximal physiological variables such as the ventilatory threshold, in some cases without a change in V O(2max). However, this effect is probably larger in cycling than in running. At the same time, skill influencing motor unit recruitment patterns is an important influence on the anaerobic threshold in cycling. Furthermore, it is likely that there is more physiological training transfer from running to cycling than vice versa. In triathletes, there is generally no difference in V O(2max) measured in cycle ergometry and treadmill running. The data concerning the anaerobic threshold in cycling and running in triathletes are conflicting. This is likely to be due to a combination of actual training load and prior training history in each discipline. The mechanisms surrounding the differences in the AT together with V O(2max) in cycling and running are not largely understood but are probably due to the relative adaptation of cardiac output influencing V O(2max) and also the recruitment of muscle mass in combination with the oxidative capacity of this mass influencing the AT. Several other physiological differences between cycling and running are addressed: heart rate is different between the two activities both for maximal and submaximal intensities. The delta efficiency is higher in running. Ventilation is more impaired in cycling than in running. It has also been shown that pedalling cadence affects the metabolic responses during cycling but also during a subsequent running bout. However, the optimal cadence is still debated. Central fatigue and decrease in maximal strength are more important after prolonged exercise in running than in cycling.
Resumo:
This study examined the effects of intermittent hypoxic training (IHT) on skeletal muscle monocarboxylate lactate transporter (MCT) expression and anaerobic performance in trained athletes. Cyclists were assigned to two interventions, either normoxic (N; n = 8; 150 mmHg PIO2) or hypoxic (H; n = 10; ∼3000 m, 100 mmHg PIO2) over a three week training (5×1 h-1h30.week-1) period. Prior to and after training, an incremental exercise test to exhaustion (EXT) was performed in normoxia together with a 2 min time trial (TT). Biopsy samples from the vastus lateralis were analyzed for MCT1 and MCT4 using immuno-blotting techniques. The peak power output (PPO) increased (p<0.05) after training (7.2% and 6.6% for N and H, respectively), but VO2max showed no significant change. The average power output in the TT improved significantly (7.3% and 6.4% for N and H, respectively). No differences were found in MCT1 and MCT4 protein content, before and after the training in either the N or H group. These results indicate there are no additional benefits of IHT when compared to similar normoxic training. Hence, the addition of the hypoxic stimulus on anaerobic performance or MCT expression after a three-week training period is ineffective.
Resumo:
OBJECTIVE: The movement of the upper limbs (eg fidgeting-like activities) is a meaningful component of nonexercise activity thermogenesis (NEAT). This study examined the relationship between upper limb movements and whole body trunk movements, by simultaneously measuring energy expenditure during the course of the day. DESIGN: A cross-sectional study consisting of 88 subjects with a wide range in body mass index (17.3-32.5 kg/m(2)). The energy expenditure over a 24-h period was measured in a large respiratory chamber. The body movements were assessed by two uniaxial-accelerometers during daytime, one on the waist and the other on the dominant arm. The accelerometry scores from level 0 (=immobile) up to level 9 (=maximal intensity) were recorded. The activities of subjects were classified into eight categories: walking at two speeds on a horizontal treadmill (A & B), ambling (C), self-care tasks (D), desk work (E), meals (F), reading (G), watching TV (H). RESULTS: There was a significant relationship between the accelerometry scores from the waist (ACwaist) and that from the wrist (ACwrist) over the daytime period (R(2)=0.64; P<0.001). The ACwrist was systematically higher than the ACwaist during sedentary activities, whereas it was the reverse for walking activities. ACwrist to ACwaist ratio of activities E-H were above 1.0 and for walking activities (A-C) were below 1.0. A multiple regression analysis for predicting daytime energy expenditure revealed that the explained variance improved by 2% only when the ACwrist was added as a second predictor in addition to the ACwaist. This indicates that the effect of the ACwrist for predicting energy expenditure was of limited importance in our conditions of measurement. CONCLUSIONS: The acceleration of the upper limbs which includes fidgeting is more elevated than that of the whole body for sitting/lying down activities. However, their contribution to energy expenditure is lower than whole body trunk movements, thus indicating that the weight-bearing locomotion activities may be a key component of NEAT. However, its contribution may depend on the total duration of the upper limb movements during the course of the day.
Resumo:
PURPOSE: Both acute hypoxia and physical exercise are known to increase oxidative stress. This randomized prospective trial investigated whether the addition of moderate exercise can alter oxidative stress induced by continuous hypoxic exposure. METHODS: Fourteen male participants were confined to 10-d continuous normobaric hypoxia (FIO2 = 0.139 +/- 0.003, PIO2 = 88.2 +/- 0.6 mm Hg, approximately 4000-m simulated altitude) either with (HCE, n = 8, two training sessions per day at 50% of hypoxic maximal aerobic power) or without exercise (HCS, n = 6). Plasma levels of oxidative stress markers (advanced oxidation protein products [AOPP], nitrotyrosine, and malondialdehyde), antioxidant markers (ferric-reducing antioxidant power, superoxide dismutase, glutathione peroxidase, and catalase), nitric oxide end-products, and erythropoietin were measured before the exposure (Pre), after the first 24 h of exposure (D1), after the exposure (Post) and after the 24-h reoxygenation (Post + 1). In addition, graded exercise test in hypoxia was performed before and after the protocol. RESULTS: Maximal aerobic power increased after the protocol in HCE only (+6.8%, P < 0.05). Compared with baseline, AOPP was higher at Post + 1 (+28%, P < 0.05) and nitrotyrosine at Post (+81%, P < 0.05) in HCS only. Superoxide dismutase (+30%, P < 0.05) and catalase (+53%, P < 0.05) increased at Post in HCE only. Higher levels of ferric-reducing antioxidant power (+41%, P < 0.05) at Post and lower levels of AOPP (-47%, P < 0.01) at Post + 1 were measured in HCE versus HCS. Glutathione peroxidase (+31%, P < 0.01) increased in both groups at Post + 1. Similar erythropoietin kinetics was noted in both groups with an increase at D1 (+143%, P < 0.01), a return to baseline at Post, and a decrease at Post + 1 (-56%, P < 0.05). CONCLUSIONS: These data provide evidence that 2 h of moderate daily exercise training can attenuate the oxidative stress induced by continuous hypoxic exposure.
Resumo:
We measured body composition and energy expenditure during walking and running on a treadmill in 40 prepubertal children: 23 obese children (9.3 +/- 1.1 years of age; 46 +/- 10 kg (mean +/- SD)) and 17 nonobese matched control children (9.2 +/- 0.6 years of age; 30 +/- 5 kg). Energy expenditure was assessed by indirect calorimetry with a standard open-circuit method. At the same speed of exercise, the energy expenditure was significantly (p < 0.01) greater in obese than in control children, in both boys and girls. Expressed per kilogram of body weight or per kilogram of fat-free mass, the energy expenditure was comparable in the two groups. Obese children had a significantly (p < 0.01) larger pulmonary ventilatory response to exercise than did control children. Heart rate was comparable in boys and girls combined but significantly higher (p < 0.05) in obese subjects, if boys and girls were analyzed separately. These data indicate that walking and running are energetically more expensive for obese children than for children of normal body weight. The knowledge of these energy costs could be useful in devising a physical activity program to be used in the treatment of obese children.
Resumo:
The purpose of this study was to examine the relationship between skeletal muscle monocarboxylate transporters 1 and 4 (MCT1 and MCT4) expression, skeletal muscle oxidative capacity and endurance performance in trained cyclists. Ten well-trained cyclists (mean +/- SD; age 24.4 +/- 2.8 years, body mass 73.2 +/- 8.3 kg, VO(2max) 58 +/- 7 ml kg(-1) min(-1)) completed three endurance performance tasks [incremental exercise test to exhaustion, 2 and 10 min time trial (TT)]. In addition, a muscle biopsy sample from the vastus lateralis muscle was analysed for MCT1 and MCT4 expression levels together with the activity of citrate synthase (CS) and 3-hydroxyacyl-CoA dehydrogenase (HAD). There was a tendency for VO(2max) and peak power output obtained in the incremental exercise test to be correlated with MCT1 (r = -0.71 to -0.74; P < 0.06), but not MCT4. The average power output (P (average)) in the 2 min TT was significantly correlated with MCT4 (r = -0.74; P < 0.05) and HAD (r = -0.92; P < 0.01). The P (average) in the 10 min TT was only correlated with CS activity (r = 0.68; P < 0.05). These results indicate the relationship between MCT1 and MCT4 as well as cycle TT performance may be influenced by the length and intensity of the task.
Resumo:
OBJECTIVES: The aim of this study was to evaluate right ventricular (RV) and left ventricular function and pulmonary circulation in chronic mountain sickness (CMS) patients with rest and stress echocardiography compared with healthy high-altitude (HA) dwellers. BACKGROUND: CMS or Monge's disease is defined by excessive erythrocytosis (hemoglobin >21 g/dl in males, 19 g/dl in females) and severe hypoxemia. In some cases, a moderate or severe increase in pulmonary pressure is present, suggesting a similar pathogenesis of pulmonary hypertension. METHODS: In La Paz (Bolivia, 3,600 m sea level), 46 CMS patients and 40 HA dwellers of similar age were evaluated at rest and during semisupine bicycle exercise. Pulmonary artery pressure (PAP), pulmonary vascular resistance, and cardiac function were estimated by Doppler echocardiography. RESULTS: Compared with HA dwellers, CMS patients showed RV dilation at rest (RV mid diameter: 36 ± 5 mm vs. 32 ± 4 mm, CMS vs. HA, p = 0.001) and reduced RV fractional area change both at rest (35 ± 9% vs. 43 ± 9%, p = 0.002) and during exercise (36 ± 9% vs. 43 ± 8%, CMS vs. HA, p = 0.005). The RV systolic longitudinal function (RV-S') decreased in CMS patients, whereas it increased in the control patients (p < 0.0001) at peak stress. The RV end-systolic pressure-area relationship, a load independent surrogate of RV contractility, was similar in CMS patients and HA dwellers with a significant increase in systolic PAP and pulmonary vascular resistance in CMS patients (systolic PAP: 50 ± 12 mm Hg vs. 38 ± 8 mm Hg, CMS vs. HA, p < 0.0001; pulmonary vascular resistance: 2.9 ± 1 mm Hg/min/l vs. 2.2 ± 1 mm Hg/min/l, p = 0.03). Both groups showed comparable systolic and diastolic left ventricular function both at rest and during stress. CONCLUSIONS: Comparable RV contractile reserve in CMS and HA suggests that the lower resting values of RV function in CMS may represent a physiological adaptation to chronic hypoxic conditions rather than impaired RV function. (Chronic Mountain Sickness, Systemic Vascular Function [CMS]; NCT01182792).
Resumo:
This retrospective, multicentre study evaluated patients with lymphangioleiomyomatosis (LAM) and pre-capillary pulmonary hypertension (PH) by right heart catheterisation. It was conducted in 20 females with a mean ± SD age of 49 ± 12 yrs and a mean ± SD time interval between LAM and PH diagnoses of 9.2 ± 9.8 yrs. All, except for one patient, were receiving supplemental oxygen. 6-min walking distance was mean ± SD 340 ± 84 m. Haemodynamic characteristics were: mean pulmonary artery pressure (PAP) 32 ± 6 mmHg, cardiac index 3.5 ± 1.1 L · min(-1) · m(-2) and pulmonary vascular resistance (PVR) 376 ± 184 dyn · s · cm(-5). Mean PAP was >35 mmHg in only 20% of cases. The forced expiratory volume in 1 s was 42 ± 25%, carbon monoxide transfer factor was 29 ± 13%, and arterial oxygen tension (P(a,O(2))) was 7.4 ± 1.3 kPa in room air. Mean PAP and PVR did not correlate with P(a,O(2)). In six patients who received oral pulmonary arterial hypertension (PAH) therapy, the PAP decreased from 33 ± 9 mmHg to 24 ± 10 mmHg and the PVR decreased from 481 ± 188 dyn · s · cm(-5) to 280 ± 79 dyn · s · cm(-5). The overall probability of survival was 94% at 2 yrs. Pre-capillary PH of mild haemodynamic severity may occur in patients with LAM, even with mild pulmonary function impairment. PAH therapy might improve the haemodynamics in PH associated with LAM.
Resumo:
Body mass index (BMI) is related with cardiorespiratory fitness (CRF), but less is known regarding the combined relationships between BMI and body fat (BF) on CRF. Cross-sectional study included 2361 girls and 2328 boys aged 10–18 years living in the area of Lisbon, Portugal. BMI was calculated by measuring height and weight, and obesity was assessed by international criteria. BF was assessed by bioimpedance. CRF was assessed by the 20-m shuttle run and the participants were classified as normal-to-high or low-CRF level according to Fitness gram criterion-referenced standards. The prevalence of low CRF was 47 and 39% in girls and boys, respectively. The corresponding values for the prevalence of obesity were 4.8 and 5.6% (not significant) and of excess BF of 12.1 and 25.1% (P <0.001), respectively. In both sexes, BMI and BF were inversely related with CRF: r = – 0.53 and – 0.45 for BMI and % BF, respectively, in boys and the corresponding values in girls were – 0.50 and – 0.33 (all P <0.01). When compared with a participant with normal BMI and BF, the odds ratios (95% confidence interval) for low CRF were 1.94 (1.46–2.58) for a participant with normal BMI and high BF, and 6.19 (5.02–7.63) for a participant with high BMI and high BF. The prevalence of low-CRF levels is high in Portuguese youths. BF negatively influences CRF levels among children/adolescents with normal BMI.
Resumo:
Background: Although there have been many studies on isokinetic shoulder exercises in evaluation and rehabilitation programs, the cardiovascular and metabolic responses of those modes of muscle strength exercises have been poorly investigated. Objective: To analyze cardiovascular and metabolic responses during a standardized test used to study the internal (IR) and external (ER) rotators maximal isokinetic strength. Methods: Four days after an incremental exercise test on cycle ergometer, ten healthy subjects performed an isokinetic shoulder strength evaluation with cardiovascular (Heart rate, HR) and metabolic gas exchange (&Vdot;O_{2}) analysis. The IR and ER isokinetic strength, measured in seated position with 45° of shoulder abduction in scapular plane, was evaluated concentrically at 60, 120 and 240°/s and eccentrically at 60°/s, for both shoulder sides. An endurance test with 30 repetitions at 240°/s was performed at the end of each shoulder side testing. Results: There was a significant increase of mean HR with isokinetic exercise (P< 0.05). Increases of HR was 42-71% over the resting values. During endurance testing, increases of HR was 77-105% over the resting values, and corresponded to 85-86% of the maximal HR during incremental test. Increase of &Vdot;O_{2} during isokinetic exercises was from 6-11 ml/min/kg to 20-43 ml/min/kg. Conclusion: This study performed significant cardiovascular and metabolic responses to isokinetic exercise of rotators shoulder muscles. A warm-up should be performed before maximal high-intensity isokinetic shoulder testing. Our results indicated that observation and supervision are important during testing and/or training sessions, especially in subjects with risk for cardiovascular disorders.
Resumo:
AIM: The aim of this study was to investigate the effect of an acute small ethanol (EtOH) dose (0.5 ml EtOH/kg fat-free mass, combined with carbohydrate) in a drink on endurance performance of trained cyclists. METHODS: Thirteen well-trained male cyclists took part in this study. A 60-min cycling endurance performance test (time trial) was performed in a calorimetric chamber after drinking an EtOH (30 +/- 1.8 ml) or a non-EtOH control (C) drink. RESULTS: Overall, EtOH induced a significant decrease in the average cycling power output (PO) (EtOH: 233 +/- 23 W versus C: 243 +/- 24 W, P < 0.01). The time course of mechanical PO showed an early decrease during the EtOH trial as compared to C (P < 0.01). Due to the lower PO, oxygen consumption, carbon dioxide production and glucose oxidation were significantly lower (P < 0.05) as compared to C. Relative to PO, heart rate response and ratings of perceived exertion (RPE) were increased by EtOH as compared to C (P < 0.05). In contrast, EtOH did not influence gross work efficiency, glycaemia and blood lactate concentration. CONCLUSIONS: These results show that the acute low dose of EtOH decreased endurance performance. An increase of cardio-vascular strain and psychobiological mechanisms may explain this decrease of endurance performance.
Resumo:
BACKGROUND: Dairy calcium supplementation has been proposed to increase fat oxidation and to inhibit lipogenesis. OBJECTIVE: We aimed to investigate the effects of calcium supplementation on markers of fat metabolism. DESIGN: In a placebo-controlled, crossover experiment, 10 overweight or obese subjects who were low calcium consumers received 800 mg dairy Ca/d for 5 wk. After 4 wk, adipose tissue was taken for biopsy for analysis of gene expression. Respiratory exchange, glycerol turnover, and subcutaneous adipose tissue microdialysis were performed for 7 h after consumption of 400 mg Ca or placebo, and the ingestion of either randomized slow-release caffeine (SRC; 300 mg) or lactose (500 mg). One week later, the test was repeated with the SRC or lactose crossover. RESULTS: Calcium supplementation increased urinary calcium excretion by 16% (P = 0.017) but did not alter plasma parathyroid hormone or osteocalcin concentrations. Resting energy expenditure (59.9 +/- 3.0 or 59.6 +/- 3.3 kcal/h), fat oxidation (58.4 +/- 2.5 or 53.8 +/- 2.2 mg/min), plasma free fatty acid concentrations (0.63 +/- 0.02 or 0.62 +/- 0.03 mmol/L), and glycerol turnover (3.63 +/- 0.41 or 3.70 +/- 0.38 micromol . kg(-1) . min(-1)) were similar with or without calcium, respectively. SRC significantly increased free fatty acid concentrations, resting fat oxidation, and resting energy expenditure. During microdialysis, epinephrine increased dialysate glycerol concentrations by 250% without and 254% with calcium. Expression of 7 key metabolic genes in subcutaneous adipose tissue was not affected by calcium supplementation. CONCLUSION: Dairy calcium supplementation in overweight subjects with habitually low calcium intakes failed to alter fat metabolism and energy expenditure under resting conditions and during acute stimulation by caffeine or epinephrine