473 resultados para OXISOL
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Para estudar o efeito da densidade de plantas sobre a produção de vagens e seus componentes na cultura do amendoim cv. Tatu, em solos com diferentes fertilidades, foram realizados três experimentos, em condições de campo, no município de Pontal, SP, em um Latossolo Roxo, em anos agrícolas distintos, no cultivo das águas. As densidades estudadas foram 5, 8, 11, 14, 17, 20, 23 e 26 plantas por metro, em espaçamento de 0,60 m entre linhas. O componente de produção responsável pela variação da produção de vagens por planta foi o número de vagens, tendo diminuído com o aumento da densidade de plantas. Nas maiores densidades de plantas, as produções por planta foram menores, todavia devido à maior população de plantas, foram obtidas nestas as maiores produtividades de vagens. Produtividades de vagens, sem perdas significativas em relação às maiores densidades, foram obtidas nas densidades de 14 plantas por metro em solo de alta fertilidade e de 11 plantas por metro em solos de média/baixa fertilidades, que originaram, respectivamente, 12,92, 10,67 e 10,93 plantas por metro à colheita.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O relevo influencia a variabilidade da textura, uma vez que condiciona o tempo de exposição dos materiais à ação do intemperismo. Neste trabalho, desenvolvido no município de Gavião Peixoto (SP), objetivou-se caracterizar a variabilidade espacial da textura de um Latossolo Vermelho distrófico sob cultivo de citros. A encosta foi dividida em três segmentos: topo, meia encosta e encosta inferior. O solo foi amostrado em malha, com intervalos regulares de 50 m, perfazendo o total de 332 pontos em uma área de 83,5 ha, nas profundidades de 0,0-0,2 m e 0,6-0,8 m. Os dados foram submetidos à análise estatística descritiva e geoestatística (modelagem de semivariogramas e mapas de krigagem). O comportamento espacial da textura de latossolos está diretamente relacionado com as formas do relevo neste estudo, que controla o sentido dos fluxos de água superficial e subsuperficial. O conceito de homogeneidade da distribuição de argila no perfil dos latossolos é uma informação que pode ser ajustada pelo conhecimento do padrão espacial dessa distribuição em diferentes formas do relevo.
Resumo:
Com o objetivo de avaliar a influência da relação P:Mg na fertilidade do solo, no estado nutricional e na produção de matéria seca da alfafa, foi realizado um experimento em vasos com Latossolo Vermelho Amarelo distrófico, segundo delineamento inteiramente casualizado, em esquema de parcelas subdivididas, com três repetições. Os tratamentos foram constituídos de combinações de P (doses: 0, 100, 200 e 400 mg kg-1, fonte: superfosfato triplo) e Mg (doses: 0, 100 e 200 mg kg-1, fonte: cloreto de magnésio), nas proporções de 0, 0,5, 1, 2 e 4. No período experimental, foram realizados três cortes, com intervalo de 30 dias (subparcelas). Os resultados demonstraram que o incremento da relação P:Mg e das doses de P e de Mg aumenta a produção de matéria seca. O teor de P e as combinações de P:Mg no tecido vegetal apresentaram estreita relação com a proporção desses nutrientes no solo. A relação 2:1 acarretou maior teor de clorofila e N na matéria seca, enquanto altas quantidades de P no solo diminuíram a absorção de K.
Resumo:
Ferralsols have high structural stability, although structural degradation has been observed to result from forest to tillage or pasture conversion. An experimental series of forest skidder passes in an east Amazonian natural forest was performed for testing the effects of mechanical stress during selective logging operations on a clay-rich Ferralsol under both dry and wet soil conditions. Distinct ruts formed up to 25 cm depth only under wet conditions. After nine passes the initially very low surface bulk density of between 0.69 and 0.80 g cm(-3) increased to 1.05 g cm(-3) in the wet soil and 0.92 g cm(-3) in the dry soil. Saturated hydraulic conductivities, initially > 250 mm h(-1), declined to a minimum of around 10 mm h(-1) in the wet soil after the first pass, and in the dry soil more gradually after nine passes. The contrasting response of bulk density and saturated hydraulic conductivity is explained by exposure of subsoil material at the base of the ruts where macrostructure rapidly deteriorated under wet conditions. We attribute the resultant moderately high hydraulic conductivities to the formation of stable microaggregates with fine sand to coarse silt textures. We conclude that the topsoil macrostructure of Ferralsols is subject to similar deterioration to that of Luvisols in temperate zones. The stable microstructure prevents marked compaction and decrease in hydraulic conductivity under wetter and more plastic soil conditions. However, typical tropical storms may regularly exceed the infiltration capacity of the deformed soils. In the deeper ruts water may concentrate and cause surface run-off, even in gently sloping areas. To avoid soil erosion, logging operations in sloping areas should therefore be restricted to dry soil conditions when rut formation is minimal.
Resumo:
Multifractal analysis is now increasingly used to characterize soil properties as it may provide more information than a single fractal model. During the building of a large reservoir on the Parana River (Brazil), a highly weathered soil profile was excavated to a depth between 5 and 8 m. Excavation resulted in an abandoned area with saprolite materials and, in this area, an experimental field was established to assess the effectiveness of different soil rehabilitation treatments. The experimental design consisted of randomized blocks. The aim of this work was to characterize particle-size distributions of the saprolite material and use the information obtained to assess between-block variability. Particle-size distributions of the experimental plots were characterized by multifractal techniques. Ninety-six soil samples were analyzed routinely for particle-size distribution by laser diffractometry in a range of scales, varying from 0.390 to 2000 mu m. Six different textural classes (USDA) were identified with a clay content ranging from 16.9% to 58.4%. Multifractal models described reasonably well the scaling properties of particle-size distributions of the saprolite material. This material exhibits a high entropy dimension, D-1. Parameters derived from the left side (q > 0) of the f(alpha) spectra, D-1, the correlation dimension (D-2) and the range (alpha(0)-alpha(q+)), as well as the total width of the spectra (alpha(max) - alpha(min)) all showed dependence on the clay content. Sand, silt and clay contents were significantly different among treatments as a consequence of soil intrinsic variability. The D, and the Holder exponent of order zero, alpha(0), were not significantly different between treatments; in contrast, D-2 and several fractal attributes describing the width of the f(alpha) spectra were significantly different between treatments. The only parameter showing significant differences between sampling depths was (alpha(0) - alpha(q+)). Scale independent fractal attributes may be useful for characterizing intrinsic particle-size distribution variability. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The objective was to study the physical attributes of an Oxisol under fallow or planted with tropical grasses under grazing. The experiment was conducted under the experimental design of randomized blocks in split-plot 2 x 5, being five types of use of soil (Brachiaria ruziziensis, Panicum maximum cv. Aries, Brachiaria brizantha cv. MG5, Panicum maximum cv. Mombaca and fallow) and two evaluation periods (after the first and after the second grazing), with four replications. We evaluated the characteristics of soil bulk density, total porosity, microporosity and macroporosity, after the first and second grazing, and soil resistance to penetration after the second grazing. In layer of 0.00 to 0.10 m, the macroporosity was affected by the interaction between types of use and evaluation periods, while the microporosity and total porosity were reduced and the density was increased from first to second evaluation time. In the subsurface layer (0.10-0.20 m), there were significant effect only of evaluation time, on the macroporosity, total porosity and density. The porosity were reduced, while the density increased from first to second evaluation time. No significant effects of types of use of soil on penetration resistance in all layers studied. The maintenance of an Oxisol under fallow or cultivation with tropical grasses subjected to grazing cattle causes a reduction in total porosity and increased density of surface soil layers (0 to 0.10 m) and subsurface (0.10 - 0.20 m), without promoting changes on resistance to penetration mechanics.
Resumo:
The bulk density and resistance to penetration as indicators of recovery were studied with the objective to investigate the physical quality of a Red Latosol (Oxisol) under restoration for 17 years using green manures, soil correction, gypsum and pasture. The experimental design was a completely randomized with nine treatments and four replications. The treatments were: control (tilled soil without crop); Stizolobium aterrium; Cajanus cajan until 1994 and then substituted by Canavalia ensiformis; lime+S. aterrimum; lime+C. cajan until 1994 and then substituted by C. ensiformis; lime+gypsum+S. aterrimum; lime+ gypsum+C. cajan until 1994 and then substituted by C. ensiformis, the treatments were installed in 1992 and remained for seven years, in 1999 Brachiaria decumbens was planted; two other controls (native vegetation and exposed soil) were also used to compare. Bulk density, resistance to penetration and soil moisture were evaluated. The results were analyzed performing analysis of variance and Tukey test at probability of 5% to compare means. The treatments of reclamation are improving the physical qualities of soil and the results of treatment with C. cajan/C. ensiformis, lime and gypsum attained physical conditioning similar to soil under natural conditions.
Resumo:
Man cultivates the soil for centuries, but the intensive business and use of the soils under Cerrado vegetation for agricultural production grew out of the seventies. The objective of this study was to evaluate soil physical characteristics as a function of sampling time and the soil uses in a Cerrado area in Uberlandia City - MG, Brazil. The managements were adopted: degraded pasture (M-1), conventional tillage (M-2), minimum tillage (M-3), tillage absence (M-4), no-tillage (NT) for three years (M-5); NT for nine years (M-6), NT for three years after Pinus (M-7), PD for one year after Pinus (M-8) and Pinus forest (M-9) with 25 years old. The evaluations were conducted in 2002/03 growing season, in two areas. The soils were: area 1, an Oxisol (Red Latosol - LV-1, M-1 through M-5) and area 2, two Oxisols (Red Latosol and Red-Yellow Latosol - LVA and LV-2, M-6 through M-9). The physical attributes studied changed depending of the soil class, sampling time and management systems, with emphasis on the area 2 soils, which, in general, better preserved its main physical attributes. Managements with intense tillage, such as the M-2, are the most soil physically degrade, presenting mostly negative changes to soil bulk density, total porosity, microporosity and macroporosity. Since the systems which promote less tillage, in short term, to preserve desirable physical attributes. The M-9 system had the lowest attributes range, compared to the others.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The aim of this work was evaluate the physiological indicators of association between water deficiency and soil acidity, by determining the nitrate reductase activity, the levels of free proline and initial growth of the root system of seedlings of sugarcane cv. IAC91-5155. After 30 days, the seedlings were transferred to plastic pots with 12 dm3 of dystrophic alic Red Latosol (Oxisol) and submitted to association of three treatments of water availability: no stress (70%), moderate stress (55%) and severe stress (40%), in according with field capacity and three acidity treatments: no stress (55%), moderate stress (33%) and severe stress (23%), considering the base saturation. The experimental design was that of random blocks under factorial scheme of 3x3, with four replicates. After 60 days under the stress association, the levels of free proline, the nitrate reductase activity and the growth of the sugarcane roots system were evaluated in seedlings of sugarcane. The nitrate reductase enzyme activity can be considered a physiological indicator of the effect of the association of acid and water stress in moderate conditions in soil, while the free proline can be considered physiological indicator to both stress in severe conditions. Water deficiency increasing reduced growth of sugarcane roots.
Resumo:
The objective of this research was to study the porosity, bulk density and retention of water of an Oxisol, located in the Northwestern region of Sn̄o Paulo state, Brazil. The soil was cultivated with Citrus sp., to which green manure was applied between rows for three years. Each of six species of green manure crops (Crotalaria juncea L., Mucuna deeringiana Steph. & Bart., Canavalia ensiformis L. DC., Cajanus cajan L., Lablab purpureum L. and Ricinus communis L.) were seeded for three years (1995, 1996 and 1997) between Citrus rows, plus a treatment with a mix of all six species and a control (natural regrowth af vegetation). The experimental design was a randomized complete block design, with four replications for each of the eight treatments. Water retention, microporosity, macroporosity, total porosity and bulk density were analyzed in the beginning (1995) and end (1997) of the experiment, at three depth ranges (0-0.10; 0.10-0.20 and 0.20-0.40m). We concluded that there were statistically significant differences for bulk density, macroporosity, total porosity and retention of water among the different soil depth ranges; there were no significant differences among treatments though.
Resumo:
In order to evaluate growth characteristics, adaptability, biomass production, nutrient recycling, nutrient distribution and the ability to regenerate degraded land, a trial using four multipurpose tree species (Leucaena leucocephala, Leucaena diversifolia, Acacia melanoxylon and Mimosa scabrella) was undertaken over two years in a distrophic red yellow latosol (oxisol) following a randomized block experimental design with four replications. At the age of two years, A. melanoxylon and L. diversifolia were the tallest species (5.25 and 4.97 m, respectively) and A. melanoxylon and M. scabrella had the largest diameters at 20 cm from tree base. Mimosa scabrella and A. melanoxylon had the highest dry matter production and quantity of nutrients in the above ground biomass. In all species, the highest nutrient contents were found in the leaves, followed by branches and stems. From all species, the highest Nutrient Utilization Efficiency Indexes were obtained for sulphur, phosphorous, and magnesium; L. diversifolia was the most efficient for nitrogen, potassium, calcium, sulphur, and manganese, while A. melanoxylon was the most efficient for phosphorus, magnesium, boron, iron, and zinc. Litter production levels over a three month period were as follows: M. scabrella > A. melanoxylon > L. diversifolia > L. leucocephala. Litter nutrient content was higher in M. scabrella than in the other species.
Resumo:
Soils submitted to the same management system in places with small relief variation manifest different spatial variability on their attributes. The objective of this work was to evaluate the spatial variability of the geometric medium diameter, aggregates in the >2 mm class, aggregates in the 2-1 mm class and organic matter of an Oxisol under culture of the sugarcane. Samplings of the soil in regular intervals of 10 m, in grid form, totaling 100 points, collected in the depths of 0.0-0.2 m and 0.2-0.4 m were made. Data were submitted to descriptive statistics, geostatistics and in sequence to kriging analyzes. Values of the variation coefficient were low for organic matter in the depth of 0.0-0.2 m, mean in the depth of 0.2-0.4 m, high for geometric medium diameter and mean for aggregates in the >2 mm class, aggregates in the 2-1 mm class in all studied depths. The occurrence of space dependence was observed for all the variables, and the largest ones were observed in the depth of 0.0-0.2 m. Small variations in the forms of the relief condition spatial variability differentiated for organic matter and stability of aggregates in the studied depths.