949 resultados para ORGANOMETALLIC CATALYSIS
Resumo:
"Prepared by the Polytechnic Institute of Brooklyn...under the supervision of Dr. C.G. Overberger."
Resumo:
Human cytochrome P450 (P450) 2D6 is an important enzyme involved in the metabolism of drugs, many of which are amines or contain other basic nitrogen atoms. Asp301 has generally been considered to be involved in electrostatic docking with the basic substrates, on the basis of previous modeling studies and site-directed mutagenesis. Substitution of Glu216 with a residue other than Asp strongly attenuated the binding of quinidine, bufuralol, and several other P450 2D6 ligands. Catalytic activity with the substrates bufuralol and 4-methoxyphenethylamine was strongly inhibited by neutral or basic mutations at Glu216 (>95%), to the same extent as the substitution of Asn at Asp301. Unlike the Asp301 mutants, the Gln216 mutant (E216Q) retained 40% enzyme efficiency with the substrate spirosulfonamide, devoid of basic nitrogen, suggesting that the substitutions at Glu216 affect binding of amine substrates more than other catalytic steps. Attempts to induce catalytic specificity toward new substrates by substitutions at Asp301 and Glu216 were unsuccessful. Collectively, the results provide evidence for electrostatic interaction of amine substrates with Glu216, and we propose that both of these acidic residues plus at least another residue(s) is (are) involved in binding the repertoire of P450 2D6 ligands.
Resumo:
Acetohydroxy acid synthases (AHAS) are thiamin diphosphate- (ThDP-) and FAD-dependent enzymes that catalyze the first common step of branched-chain amino acid biosynthesis in plants, bacteria, and fungi. Although the flavin cofactor is not chemically involved in the physiological reaction of AHAS, it has been shown to be essential for the structural integrity and activity of the enzyme. Here, we report that the enzyme-bound FAD in AHAS is reduced in the course of catalysis in a side reaction. The reduction of the enzyme-bound flavin during turnover of different substrates under aerobic and anaerobic conditions was characterized by stopped-flow kinetics using the intrinsic FAD absorbance. Reduction of enzyme-bound FAD proceeds with a net rate constant of k' = 0.2 s(-1) in the presence of oxygen and approximately 1 s(-1) under anaerobic conditions. No transient flavin radicals are detectable during the reduction process while time-resolved absorbance spectra are recorded. Reconstitution of the binary enzyme-FAD complex with the chemically synthesized intermediate 2-(hydroxyethyl)-ThDP also results in a reduction of the flavin. These data provide evidence for the first time that the key catalytic intermediate 2-(hydroxyethyl)ThDP in the carbanionic/enamine form is not only subject to covalent addition of 2-keto acids and an oxygenase side reaction but also transfers electrons to the adjacent FAD in an intramolecular redox reaction yielding 2-acetyl-ThDP and reduced FAD. The detection of the electron transfer supports the idea of a common ancestor of acetohydroxy acid synthase and pyruvate oxidase, a homologous ThDP- and FAD-dependent enzyme that, in contrast to AHASs, catalyzes a reaction that relies on intercofactor electron transfer.
Resumo:
The complex molybdoenzyme xanthine oxidase (XO) catalyses the oxidation of xanthine to uric acid. Here we report the first direct (unmediated) catalytic electrochemistry of the enzyme in the presence of xanthine. The only non-turnover response (without substrate present) is a sharp two-electron wave from the FAD cofactor at -242 mV vs. NHE (pH 8.0). Upon addition of xanthine to the electrochemical cell a pronounced electrocatalytic anodic current appears at ca. +300 mV vs. NHE, but the FAD peak remains. This is unusual as the onset of catalysis should occur at the potential of the FAD cofactor (the site at which oxygen or NAD+ binds to the enzyme in solution). The observed electrochemical catalysis is prevented by the addition of known XO inhibitors allopurinol or cyanide. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Thiamin (vitamin B1) is required in animal diets because it is the precursor of the enzyme cofactor, thiamin diphosphate. Unlike other B vitamins, the dietary thiamin requirement is proportional to non-fat energy intake but there is no obvious biochemical reason for this relationship. In the present communication we show for two enzymes that the cofactor undergoes a slow destruction during catalysis, which may explain the interdependence of thiamin and energy intakes.
Resumo:
No abstract
Resumo:
We report the synthesis, characterisation and catalytic performance of two nature-inspired biomass-derived electro-catalysts for the oxygen reduction reaction in fuel cells. The catalysts were prepared via pyrolysis of a real food waste (lobster shells) or by mimicking the composition of lobster shells using chitin and CaCO3 particles followed by acid washing. The simplified model of artificial lobster was prepared for better reproducibility. The calcium carbonate in both samples acts as a pore agent, creating increased surface area and pore volume, though considerably higher in artificial lobster samples due to the better homogeneity of the components. Various characterisation techniques revealed the presence of a considerable amount of hydroxyapatite left in the real lobster samples after acid washing and a low content of carbon (23%), nitrogen and sulphur (<1%), limiting the surface area to 23 m2/g, and consequently resulting in rather poor catalytic activity. However, artificial lobster samples, with a surface area of ≈200 m2/g and a nitrogen doping of 2%, showed a promising onset potential, very similar to a commercially available platinum catalyst, with better methanol tolerance, though with lower stability in long time testing over 10,000 s.
Resumo:
The reactions of group 16 heterocycles with organometallic reagents are described. Thiophenes have been used as models for organic sulfur in coal and their reactivity towards triiron dodecacarbonyl has been investigated. Reaction of unsubstituted thiophene with Fe3(CO)12 results in desulfurisation of the heterocycle, with the organic fragment being recovered in the form of the ferrole, C4H4.Fe2(CO)6. In addition a novel organometallic compound of iron is isolated, the formula of which is shown to be C4H4.Fe3(CO)8. Bezothiophene reacts with Fe3(CO)12 to yield benzothiaferrole, C8H6S.Fe2(CO)6, in which the sulfur is retained in the heterocycle. Dibenzothiophene, a more accurate model for organic sulfur in coal, displays no reactivity towards the iron carbonyl, suggesting that the more condensed systems will desulfurise less readily. Microwave methodology has been successful in accelerating the reactions of thiophenes with Fe3(CO)12. However, reaction of benzothiophene does not proceed to the desulfurisation stage while dibenzothiophene is unreactive even under microwave conditions. Tellurophenes (Te analogues of thiophenes) are shown to mimic the behaviour of thiophenes towards certain organometallic reagents with the advantage that their greater reactivity enables recovery of products in higher yields. Hence, reaction of tellurophene with Fe3(CO)12 again affords the ferrole but with an almost ten-fold increase in yield over thiophene. More significantly, dibenzotellurophene is also detellurated by the iron carbonyl affording the previously inaccessible dibenzoferrole, C12H8.Fe2(CO)6, thereby demonstrating the mechanistic feasibility of dechalcogenation of the more condensed aromatic molecules. The potential of tellurium heterocycles to act as precursors for novel organometallics is also recognised owing to the relatively facile elimination of the heteroatom from these systems. Thus, 2-telluraindane reacts with Fe3(CO)12 to yield a novel organometallic compound of formula C16H16.Fe(CO)3, arising from the unsymmetric dimerisation of two organic fragments.
Resumo:
The synthetic hectorite, laponite has been used within the paper industry to produce mildly conducting paper for use in electrographic printing. The aim of this research was to modify laponite in order to improve the electrical conductivity. In a continuation of a previous investigation involving organotin intercalation of laponite, the organotin precursor (p-CH3,OC6H4)4Sn was synthesised and characterised using Mass Spectroscopy, Infrared Spectroscopy and elemental analysis. Results of intercalation with this compound and a range of organobismuth and organoantimony compounds suggested that a halide content within the precursor was necessary for improvement in conductivity to be observed. Organometallic intercalation of a range of organotellurium compounds with laponite provided evidence that a hydrolysis reaction on the clay surface followed by the release of hydrochloric acid was an important first step if a reaction was to occur with the clay. Atomic Absorption Spectroscopy studies have shown that the acid protons underwent exchange with the interlayer sodium ions in the clay to varying degrees. Gas-liquid Chromatography and Infrared Spectroscopy revealed that the carbon-tellurium bond remained intact. Powder X-ray diffraction revealed that there had been no increase in the basal spacing. The a.c. conductivity of the modified clays in the form of pressed discs was studied over a frequency range of 12Hz - 100kHz using two electrode systems, silver paste and stainless steel. The a.c. conductivity consists of two components, ionic and reactive. The conductivity of laponite was increased by intercalation with organometallic compounds. The most impressive increase was gained using the organotellurium precursor (p-CH3OC6H4)2TeCl2. Conductivity investigations using the stainless steel electrode where measurements are made under pressure showed that in the case of laponite, where poor particle-particle contact exists at ambient pressure, there is a two order of magnitude increase in the measured a.c. conductivity. This significant increase was not seen in modified laponites where the particle-particle contact had already been improved upon. Investigations of the clay surface using Scanning Electron Microscopy suggested that the improvement in particle-particle contact is the largest factor in the determination of the conductivity. The other important factor is the nature and the concentration of the interlayer cations. A range of clays were synthesised in order to increase the concentration of sodium interlayer cations. A sol-gel method was employed to carry out these syntheses. A conductivity evaluation showed that increasing the concentration of the sodium cations within the clay led to an increase in the conductivity.
Resumo:
Phosphorus is a key plant nutrient and as such, is incorporated into growing biomass in small amounts. This paper examines the influence of phosphorus, present in either acid (HPO) or salt ((NH)PO) form, on the pyrolysis behaviour of both Miscanthus × giganteus, and its cell wall components, cellulose, hemicellulose (xylan) and lignin (Organosolv). Pyrolysis-gas chromatography-mass spectrometry (PY-GC-MS) is used to examine the pyrolysis products during thermal degradation, and thermogravimetric analysis (TGA) is used to examine the distribution of char and volatiles. Phosphorus salts are seen to catalyse the pyrolysis and modify the yields of products, resulting in a large increase in char yield for all samples, but particularly for cellulose and Miscanthus. The thermal degradation processes of cellulose, xylan and Miscanthus samples occur in one step and the main pyrolysis step is shifted to lower temperature in the presence of phosphorus. A small impact of phosphorus was observed in the case of lignin char yields and the types of pyrolysis decomposition products produced. Levoglucosan is a major component produced in fast pyrolysis of cellulose. Furfural and levoglucosenone become more dominant products upon P-impregnation pointing to new rearrangement and dehydration routes. The P-catalysed xylan decomposition route leads to a much simpler mixture of products, which are dominated by furfural, 3-methyl-2-cyclopenten-1-one and one other unconfirmed product, possibly 3,4-dihydro-2-methoxy-2H-pyran or 4-hydroxy-5,6-dihydro-(2H)-pyran-2-one. Phosphorus-catalysed lignin decomposition also leads to a modified mixture of tar components and desaspidinol as well as other higher molecular weight component become more dominant relative to the methoxyphenyl phenols, dimethoxy phenols and triethoxy benzene. Comparison of the results for Miscanthus lead to the conclusion that the understanding of the fast pyrolysis of biomass can, for the most part, be gained through the study of the individual cell wall components, provided consideration is given to the presence of catalytic components such as phosphorus.
Resumo:
Short rotation willow coppice (SRC) and a synthetic biomass, a mixture of the basic biomass components (cellulose, hemicellulose and lignin), have been investigated for the influence of potassium on their pyrolysis behaviours. The willow sample was pre-treated to remove salts and metals by hydrochloric acid, and this demineralised sample was impregnated with potassium. The same type of pre-treatment was applied to components of the synthetic biomass. Characterisation was performed using thermogravimetric analysis with measurement of products by means of Fourier transform infrared spectroscopy (TGA-FTIR) and pyrolysis-gas chromatography-mass spectrometry (PY-GC-MS). A comparison of product distributions and kinetics are reported. While the general features of decomposition of SRC are described well by an additive behaviour of the individual components, there are some differences in the magnitude of the influence of potassium, and on the products produced. For both SRC and the synthetic biomass, TGA traces indicate catalytic promotion of both of the two-stages of biomass decomposition, and potassium can lower the average apparent first-order activation energy for pyrolysis by up to 50 kJ/mol. For both SRC and synthetic biomass the yields and distribution of pyrolysis products have been influenced by the presence of the catalyst. Potassium catalysed pyrolysis increases the char yields markedly and this is more pronounced for synthetic biomass than SRC. Gas evolution profiles during pyrolysis show the same general features for both SRC and synthetic biomass. Relative methane yields increase during the char formation stage of pyrolysis of the potassium doped samples. The evolution profiles of acetic acid and formaldehyde change, and these products are seen in lower relative amounts for both the demineralised samples. A greater variation in pyrolysis products is observed from the treated SRC samples compared to the different synthetic biomass samples. Furthermore, substituted phenols from lignin pyrolysis are more dominant in the pyrolysis profiles of the synthetic biomass than of the SRC, implying that the extracted lignins used in the synthetic biomass yield a greater fraction of monomeric type species than the lignocellulosic cell wall material of SRC. For both types of samples, PY-GS-MS analyses show that potassium has a significant influence on cellulose decomposition markers, not just on the formation of levoglucosan, but also other species from the non-catalysed mechanism, such as 3,4-dihydroxy-3-cyclobutene-1,2-dione. © 2007 Elsevier Ltd. All rights reserved.