995 resultados para ORAL IMPLANTS
Resumo:
To compare the adjunctive clinical effects in the non-surgical treatment of peri-implantitis with either local drug delivery (LDD) or photodynamic therapy (PDT).
Resumo:
The aim of this prospective cohort study was to evaluate an anti-infective surgical protocol for the treatment of peri-implantitis.
Reversibility of experimental peri-implant mucositis compared with experimental gingivitis in humans
Resumo:
To monitor clinical, microbiological and host-derived alterations occurring around teeth and titanium implants during the development of experimental gingivitis/mucositis and their respective healing sequence in humans.
Resumo:
The aim was to evaluate histologically the outcome of a bioglass and autogenous bone (at 1 : 1 ratio) composite implantation for transalveolar sinus augmentation.
Resumo:
Retention of overdentures is important for patients' satisfaction. The study tested whether the clinical performance of retentive clips made of poly-ether-ether-ketone (PEEK) is superior to those made of poly-oxy-methylene (POM).
Resumo:
Diagnostics imaging is an essential component of patient selection and treatment planning in oral rehabilitation by means of osseointegrated implants. In 2002, the EAO produced and published guidelines on the use of diagnostic imaging in implant dentistry. Since that time, there have been significant developments in both the application of cone beam computed tomography as well as in the range of surgical and prosthetic applications that can potentially benefit from its use. However, medical exposure to ionizing radiation must always be justified and result in a net benefit to the patient. The as low a dose as is reasonably achievable principle must also be applied taking into account any alternative techniques that might achieve the same objectives. This paper reports on current EAO recommendations arising from a consensus meeting held at the Medical University of Warsaw (2011) to update these guidelines. Radiological considerations are detailed, including justification and optimization, with a special emphasis on the obligations that arise for those who prescribe or undertake such investigations. The paper pays special attention to clinical indications and radiographic diagnostic considerations as well as to future developments and trends.
Resumo:
In implant dentistry, there is a need for synthetic bone substitute blocks to support ridge augmentation in situations where large bone volumes are missing. Polycaprolactone-based scaffolds demonstrated excellent results in bone tissue engineering applications. The use of customized polycaprolactone-tricalcium phosphate (PCL-TCP) displayed promising results from recent rat femur and rabbit calvaria studies. However, data from clinically representative models in larger animals do not exist.
Resumo:
AIM: The aim of this study was to compare the clinical outcomes after 2 years with bone level implants placed to restore a single missing teeth that needed simultaneous augmentation and were treated with a transmucosal or submerged approach. METHODS: This study analyzed a subset of patients included in an ongoing prospective multicenter randomized clinical trial (RCT) involving12 centers where patients were to be followed-up to 5 years after loading. Of the 120 implants that were placed in the original study, and randomly assigned to submerged or non-submerged healing, 52 needed simultaneous augmentation (28 women patients and 24 men patients, between 23 and 78 years of age). Twenty-seven of them received implants with submerged healing (AuS), while in 25 patients the implants were inserted with a non-submerged protocol (AuNS). At the 2-year follow-up visit, radiographic crestal bone level changes were recorded as well as soft tissue parameters included Pocket probing depth (PPD), bleeding on probing (BoP) and clinical attachment level (CAL) at teeth adjacent to the implant site. RESULTS: After 2 years a small amount of bone resorption was found in both groups (0.37 ± 0.49 mm in the AuS group and 0.54 ± 0.76 in the AuNS group; P < 0.001). There was no statistically significant difference between AuS Group and AuNS group for PPD (2.5 vs. 2.4 mm), BOP (BOP + sites: 8.8% vs. 11.5%) and CAL (2.8 vs. 2.4 mm) at the 2-year follow-up visit. CONCLUSIONS: When a single implant is placed in the aesthetic zone in conjunction with bone augmentation for a moderate peri-implant defect, submerged and transmucosal healing determine similar outcome, hence there is no need to submerge an implant in this given clinical situation.
Resumo:
The objective of this systematic review was to assess the 5- and 10-year survival of implant-supported fixed dental prostheses (FDPs) and to describe the incidence of biological and technical complications.
Resumo:
OBJECTIVES: To test the survival rates, and the technical and biological complication rates of customized zirconia and titanium abutments 5 years after crown insertion. MATERIAL AND METHODS: Twenty-two patients with 40 single implants in maxillary and mandibular canine and posterior regions were included. The implant sites were randomly assigned to zirconia abutments supporting all-ceramic crowns or titanium abutments supporting metal-ceramic crowns. Clinical examinations were performed at baseline, and at 6, 12, 36 and 60 months of follow-up. The abutments and reconstructions were examined for technical and/or biological complications. Probing pocket depth (PPD), plaque control record (PCR) and Bleeding on Probing (BOP) were assessed at abutments (test) and analogous contralateral teeth (control). Radiographs of the implants revealed the bone level (BL) on mesial (mBL) and distal sides (dBL). Data were statistically analyzed with nonparametric mixed models provided by Brunner and Langer and STATA (P < 0.05). RESULTS: Eighteen patients with 18 zirconia and 10 titanium abutments were available at a mean follow-up of 5.6 years (range 4.5-6.3 years). No abutment fracture or loss of a reconstruction occurred. Hence, the survival rate was 100% for both. Survival of implants supporting zirconia abutments was 88.9% and 90% for implants supporting titanium abutments. Chipping of the veneering ceramic occurred at three metal-ceramic crowns supported by titanium abutments. No significant differences were found at the zirconia and titanium abutments for PPD (meanPPD(ZrO2) 3.3 ± 0.6 mm, mPPD(T) (i) 3.6 ± 1.1 mm), PCR (mPCR(Z) (rO) (2) 0.1 ± 0.3, mPCR(T) (i) 0.3 ± 0.2) and BOP (mBOP(Z) (rO) (2) 0.5 ± 0.3, mBOP(T) (i) 0.6 ± 0.3). Moreover, the BL was similar at implants supporting zirconia and titanium abutments (mBL(Z) (rO) (2) 1.8 ± 0.5, dBL(Z) (rO) (2) 2.0 ± 0.8; mBL(T) (i) 2.0 ± 0.8, dBL(T) (i) 1.9 ± 0.8). CONCLUSIONS: There were no statistically or clinically relevant differences between the 5-year survival rates, and the technical and biological complication rates of zirconia and titanium abutments in posterior regions.
Resumo:
The objectives of the review were (1) to evaluate the accuracy of implant-level impressions in cases with internal and external connection abutments/reconstructions, and (2) to evaluate the incidence of technical complications of internal and external connection metal- or zirconia-based abutments and single-implant reconstructions.
Resumo:
To assess the 5-year survival rates and incidences of complications of cemented and screw-retained implant reconstructions.
Resumo:
OBJECTIVES: One main problem occurring after bone grafting is resorption, leading to insufficient bone volume and quality, and may subsequently cause dental implant failure. Comparison of graft volume and bone density of iliac crest and calvarial transplants determined by animal studies demonstrates significantly lower resorption of bone grafts harvested from the skull. This paper is the first clinical study evaluating bone volume and density changes of calvarial split bone grafts after alveolar ridge reconstruction. MATERIAL AND METHODS: Bone volume and density were determined using CT scans and the software program Dicom Works in a total of 51 calvarial grafts after alveolar ridge augmentation in 15 patients. CT scans were taken in all 15 patients immediately after grafting (T0) and before implantation after a postoperative period of 6 months (T1). In five patients (26 calvarial grafts), a 1-year follow-up was performed (T2). RESULTS: A mean volume reduction of 16.2% at T1 (15 patients) and 19.2% at T2 (five patients) was observed. Bone density was high--about 1000 Hounsfield units--and did not change during the 1-year period. At the time of implantation, 41 transplants were classified as quality 1 bone and 10 as quality 2-3 bone. Grafting area and the technique used for grafting (inlay or onlay graft) did not affect the postoperative bone volume reduction. Generalized osteoporosis did not increase the resorption rate of calvarial transplants. CONCLUSION: Based on these findings, calvarial split bone grafts are a promising alternative for alveolar ridge reconstruction in dental implantology.
Resumo:
OBJECTIVE: To analyze the clinical outcome of horizontal ridge augmentation using autogenous block grafts covered with an organic bovine bone mineral (ABBM) and a bioabsorbable collagen membrane. MATERIAL AND METHODS: In 42 patients with severe horizontal bone atrophy, a staged approach was chosen for implant placement following horizontal ridge augmentation. A block graft was harvested from the symphysis or retromolar area, and secured to the recipient site with fixation screws. The width of the ridge was measured before and after horizontal ridge augmentation. The block graft was subsequently covered with ABBM and a collagen membrane. Following a tension-free primary wound closure and a mean healing period of 5.8 months, the sites were re-entered, and the crest width was re-assessed prior to implant placement. RESULTS: Fifty-eight sites were augmented, including 41 sites located in the anterior maxilla. The mean initial crest width measured 3.06 mm. At re-entry, the mean width of the ridge was 7.66 mm, with a calculated mean gain of horizontal bone thickness of 4.6 mm (range 2-7 mm). Only minor surface resorption of 0.36 mm was observed from augmentation to re-entry. CONCLUSIONS: The presented technique of ridge augmentation using autogenous block grafts with ABBM filler and collagen membrane coverage demonstrated successful horizontal ridge augmentation with high predictability. The surgical method has been further simplified by using a resorbable membrane. The hydrophilic membrane was easy to apply, and did not cause wound infection in the rare instance of membrane exposure.
Resumo:
Microrough titanium (Ti) surfaces of dental implants have demonstrated more rapid and greater bone apposition when compared with machined Ti surfaces. However, further enhancement of osteoblastic activity and bone apposition by bio-functionalizing the implant surface with a monomolecular adsorbed layer of a co-polymer - i.e., poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) and its derivatives (PLL-g-PEG/PEG-peptide) - has never been investigated. The aim of the present study was to examine early bone apposition to a modified sandblasted and acid-etched (SLA) surface coated with an Arg-Gly-Asp (RGD)-peptide-modified polymer (PLL-g-PEG/PEG-RGD) in the maxillae of miniature pigs, and to compare it with the standard SLA surface. Test and control implants had the same microrough topography (SLA), but differed in their surface chemistry (polymer coatings). The following surfaces were examined histomorphometrically: (i) control - SLA without coating; (ii) (PLL-g-PEG); (iii) (PLL-g-PEG/PEG-RDG) (RDG, Arg-Asp-Gly); and (iv) (PLL-g-PEG/PEG-RGD). At 2 weeks, RGD-coated implants demonstrated significantly higher percentages of bone-to-implant contact as compared with controls (61.68% vs. 43.62%; P < 0.001). It can be concluded that the (PLL-g-PEG/PEG-RGD) coatings may promote enhanced bone apposition during the early stages of bone regeneration.