997 resultados para OPTIC RADIATION
Resumo:
Background: Butterflies of the subtribe Mycalesina (Nymphalidae: Satyrinae) are important model organisms in ecology and evolution. This group has radiated spectacularly in the Old World tropics and presents an exciting opportunity to better understand processes of invertebrate rapid radiations. However, the generic-level taxonomy of the subtribe has been in a constant state of flux, and relationships among genera are unknown. There are six currently recognized genera in the group. Mycalesis, Lohora and Nirvanopsis are found in the Oriental region, the first of which is the most speciose genus among mycalesines, and extends into the Australasian region. Hallelesis and Bicyclus are found in mainland Africa, while Heteropsis is primarily Madagascan, with a few species in Africa. We infer the phylogeny of the group with data from three genes (total of 3139 bp) and use these data to reconstruct events in the biogeographic history of the group.,Results: The results indicate that the group Mycalesina radiated rapidly around the Oligocene-Miocene boundary. Basal relationships are unresolved, but we recover six well-supported clades. Some species of Mycalesis are nested within a primarily Madagascan clade of Heteropsis,while Nirvanopsis is nested within Lohora. The phylogeny suggests that the group had its origin either in Asia or Africa, and diversified through dispersals between the two regions, during the late Oligocene and early Miocene. The current dataset tentatively suggests that the Madagascan fauna comprises two independent radiations. The Australasian radiation shares a common ancestor derived from Asia. We discuss factors that are likely to have played a key role in the diversification of the group. Conclusions: We propose a significantly revised classification scheme for Mycalesina. We conclude that the group originated and radiated from an ancestor that was found either in Asia or Africa, with dispersals between the two regions and to Australasia. Our phylogeny paves the way for further comparative studies on this group that will help us understand the processes underlying diversification in rapid radiations of invertebrates.
Resumo:
Represented by approximately 85 species, Hemidactylus is one of the most diverse and widely distributed genera of reptiles in the world. In the Indian subcontinent, this genus is represented by 28 species out of which at least 13 are endemic to this region. Here, we report the phylogeny of the Indian Hemidactylus geckos based on mitochondrial and nuclear DNA markers sequenced from multiple individuals of widely distributed as well as endemic congeners of India. Results indicate that a majority of the species distributed in India form a distinct clade whose members are largely confined to the Indian subcontinent thus representing a unique Indian radiation. The remaining Hemidactylus geckos of India belong to two other geographical clades representing the Southeast Asian and West-Asian arid zone species. Additionally, the three widely distributed, commensal species (H. brookii, H. frenatus and H. flaviviridis) are nested within the Indian radiation suggesting their Indian origin. Dispersal-vicariance analysis also supports their Indian origin and subsequent dispersal out-of-India into West-Asian arid zone and Southeast Asia. Thus, Indian subcontinent has served as an important arena for diversification amongst the Hemidactylus geckos and in the evolution and spread of its commensal geckos. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The aim of this thesis was to study ecology of Baltic Sea ice from two perspectives. In the first two studies, sea-ice ecology from riverine-influenced fast ice to drift ice in the Bothnian Bay was investigated, whereas the last two studies focus on the sensitivity of sea-ice bacteria and algae to UVA examined in situ. The seasonal sea ice cover is one of the main characteristics of the Baltic Sea, and despite the brackish parental water, the ice structure is similar to polar ice with saline brine inclusions, the sea ice habitat. The decreasing seawater salinity from the northern Baltic Sea to the Bothnian Bay translates to decreasing brine volumes along the gradient, governing the size and community structure of the food webs in ice. However, the drift and fast ice in the Bothnian Bay may differ greatly in this sense, as drift ice may have been formed at more southern locations. Rafting and the formation of snow ice are common processes in the ice field of the Bothnian Bay. As evidenced in this thesis, rafting altered the vertical distribution of organisms and snow-ice formation provided habitable space in the better-illuminated, nitrogen-rich surface layer. The divergence between fast and drift ice became apparent at the more advanced stages, and chlorophyte biomass decreased from fast to drift ice, while the opposite held true for protozoan and metazoan biomass. The brine volumes affected the communities somewhat, and a higher percentage of flagellate species was generally linked to lower brine volumes, whereas chain-forming diatoms were mostly concentrated in layers with larger brine volumes. These results add to knowledge of the ecological significance of the ice cover lasting up to 7 months per year in this area. Sea-ice food webs are generally light-limited, but while increasing light irradiances typically enhance the primary production and further, the secondary production in sea ice, any increase in solar radiation also includes an increase in harmful UVA radiation. The Baltic Sea ice microbial communities were clearly sensitive to UVA and the responses were strongly linked to the earlier light history, as well as to the solar irradiances they were exposed to. The increased biomass of chlorophytes and pennate diatoms, when UVA was excluded, indicates that their normally minor contribution to the biomass in the upper layers of sea ice might be partly dictated by UVA. The effects of UVA on bacterial production in Baltic Sea ice mostly followed the responses in algal growth, but occasionally the exposure to UVA even enhanced the bacterial production. The dominant bacterial class, Flavobacteria, seemed to be UVA-tolerant, whereas all the Alpha-, Beta- and Gammaproteobacteria present in the surface layer showed UVA sensitivity. These results indicate that changes in the light field of ice may alter the community structure and affect the functioning of ice food webs, and are of importance when the effects of thinning of the ice cover are assessed.
Resumo:
X-ray synchrotron radiation was used to study the nanostructure of cellulose in Norway spruce stem wood and powders of cobalt nanoparticles in cellulose support. Furthermore, the growth of metallic clusters was modelled and simulated in the mesoscopic size scale. Norway spruce was characterized with x-ray microanalysis at beamline ID18F of the European Synchrotron Radiation Facility in Grenoble. The average dimensions and the orientation of cellulose crystallites was determined using x-ray microdiffraction. In addition, the nutrient element content was determined using x-ray fluorescence spectroscopy. Diffraction patterns and fluorescence spectra were simultaneously acquired. Cobalt nanoparticles in cellulose support were characterized with x-ray absorption spectroscopy at beamline X1 of the Deutsches Elektronen-Synchrotron in Hamburg, complemented by home lab experiments including x-ray diffraction, electron microscopy and measurement of magnetic properties with a vibrating sample magnetometer. Extended x-ray absorption fine structure spectroscopy (EXAFS) and x-ray diffraction were used to solve the atomic arrangement of the cobalt nanoparticles. Scanning- and transmission electron microscopy were used to image the surfaces of the cellulose fibrils, where the growth of nanoparticles takes place. The EXAFS experiment was complemented by computational coordination number calculations on ideal spherical nanocrystals. The growth process of metallic nanoclusters on cellulose matrix is assumed to be rather complicated, affected not only by the properties of the clusters themselves, but essentially depending on the cluster-fiber interfaces as well as the morphology of the fiber surfaces. The final favored average size for nanoclusters, if such exists, is most probably a consequence of these two competing tendencies towards size selection, one governed by pore sizes, the other by the cluster properties. In this thesis, a mesoscopic model for the growth of metallic nanoclusters on porous cellulose fiber (or inorganic) surfaces is developed. The first step in modelling was to evaluate the special case of how the growth proceeds on flat or wedged surfaces.
Resumo:
An examination of radiation-damage processes consequent to high-energy irradiation in certain ammonium salts studied using ESR of free radical together with the structural information available from neutron diffraction studies shows that, other factors being equal/nearly equal, symmetry-related bonds are preserved in preference to those unrelated to one another by any symmetry.
Resumo:
We report 3d-4d4d Auger spectra of Ce metal with the use of synchrotron radiation to excite the initial core hole. By sweeping the excitation energy through the 3d-->4f threshold, it has been possible to excite different initial states selectively, enabling us to analyze the complex spectrum in terms of different contributions arising from various deca channels.
Resumo:
We report the 4d-XY (X, Y = 5p, 4f, and the conduction band) Auger spectra of clean Gd using a monochromatic photon source with energies above and below the 3d threshold. The spectra with higher hv show the existence of intense spectator-hole Auger transitions. Comparison of these spectra with those obtained with a primary electron source allows detailed interpretation of the various features and explains the unusual spin polarization of the electron-induced spectrum reported earlier.
Resumo:
The RASCALS expedition spent over three weeks at the Summit camp research station near the top of the Greenland Ice Sheet during polar summer 2010. During this time, detailed measurements of the physical and optical properties of Arctic perennial snow were carried out concurrently with snow albedo and reflectance measurements. Favorable weather conditions during the campaign enabled the collection of a large dataset on Arctic snow albedo and associated quantities for use in developing and validating remote sensing algorithms for snow albedo using satellites. This report provides a description of the measurements and conditions during the campaign. RASCALS-retkikunnan tehtävä oli tutkia Grönlannin mannerjäätikön lumen fysikaalisia ja optisia ominaisuuksia sekä Auringon valon vuorovaikutusta lumen kanssa. Retikunta vietti hieman yli kolme viikkoa mannerjäätikön keskellä sijaitsevalla Summit Camp-tutkimusasemalla tehden mittauksia. Sääolot suosivat kampanjaa, jonka seurauksena onnistuttiin keräämään laaja ja monipuolinen tietoaineisto mannerjäätikön lumen pintakerroksesta ja eritoten lumen heijastavuuden (albedon)käyttäytymisestä. Aineisto on hyödyllinen kehitettäessä ja varmennettaessa lumen albedon kaukokartoitusmenetelmiä satelliiteilla.
Resumo:
We study change in the polarization of electromagnetic waves due to the stimulated Raman scattering in a plasma. In this process an electromagnetic wave undergoes coherent scattering off an electron plasma wave. It is found that some of the observed polarization properties such as the rapid temporal variations, sense reversal, rotation of the plane of polarization, and change of nature of polarization in the case of pulsars and quasars could be accounted for through stimulated Raman scattering.
Resumo:
The efficiency of acoustooptic (AO) interaction in YZ-cut proton exchanged (PE) LiNbO3 waveguides is theoretically analysed by determining the overlap between the optical and acoustic field distributions. The present analysis takes into account the perturbed SAW field distribution due to the presence of the PE layer on the LiNbO3 substrate determined by the rigorous layered medium approach. The overlap is found to be significant upto very high acoustic frequencies of the order of 5 GHz, whereas in the earlier analysis by vonHelmolt and Schaffer [6] for diffused waveguides, it was shown that the overlap integral rolls down to nearly zero at this high frequency range.
Resumo:
The modulational instability of a large-amplitude, linearly polarized electromagnetic wave propagating in an electron-positron plasma is considered, including the combined effect of relativistic mass variation of the plasma particles, harmonic generation, and the non-resonant, finite-frequency electrostatic density perturbations, all caused by the large-amplitude radiation field. The radiation from many strong sources, such as AGN and pulsars, has been observed to vary over a host of time-scales. It is possible that the extremely rapid variations in the non-thermal continuum of AGN, as well as in the non-thermal radio radiation from pulsars, can be accounted for by the modulational instabilities to which radiation may be subjected during its propagation out of the emission region.
Resumo:
A holographic optical element (HOE) based single-mode hybrid fiber optic interferometer for realizing the zero-order fringe is described. The HOE proposed and used integrates the actions of a beam combiner and a lens, and endows the interferometer with high tolerance for repositioning errors. The proposed method is simple and offers advantages such as the elimination of in situ processing for the hologram.
Resumo:
Semiconductor based nanoscale heterostructures are promising candidates for photocatalytic and photovoltaic applications with the sensitization of a wide bandgap semiconductor with a narrow bandgap material being the most viable strategy to maximize the utilization of the solar spectrum. Here, we present a simple wet chemical route to obtain nanoscale heterostructures of ZnO/CdS without using any molecular linker. Our method involves the nucleation of a Cd-precursor on ZnO nanorods with a subsequent sulfidation step leading to the formation of the ZnO/CdS nanoscale heterostructures. Excellent control over the loading of CdS and the microstructure is realized by merely changing the initial concentration of the sulfiding agent. We show that the heterostructures with the lowest CdS loading exhibit an exceptionally high activity for the degradation of methylene blue (MB) under solar irradiation conditions; microstructural and surface analysis reveals that the higher activity in this case is related to the dispersion of the CdS nanoparticles on the ZnO nanorod surface and to the higher concentration of surface hydroxyl species. Detailed analysis of the mechanism of formation of the nanoscale heterostructures reveals that it is possible to obtain deterministic control over the nature of the interfaces. Our synthesis method is general and applicable for other heterostructures where the interfaces need to be engineered for optimal properties. In particular, the absence of any molecular linker at the interface makes our method appealing for photovoltaic applications where faster rates of electron transfer at the heterojunctions are highly desirable.