923 resultados para Nutrients in foliar area and mycorrhizal colonization
Resumo:
Studies were carried out mostly in the area of RMS Titanic wreck site (41°44'N, 49°57'W) located above the continental slope and the south of the Grand Banks of Newfoundland. In a period from 18.06 to 24.09.2001 five surveys of production characteristics of surface phytoplankton were conducted over 5-9 days. Mean values of these characteristics obtained during the surveys were 9.2-11.7 mg C/m**3 per day for primary production (C_phs), 0.102-0.188 mg/m**3 for chlorophyll a (C_chls), and 4.44-7.42 mg C/mg chl. a per hour for assimilation number (AN). The main reason for low C_phs variability was a significant inverse relationship (R=-0.66) between AN and C_chls found over the research area. When cold shelf waters dominated in the area (27.07 to 19.08.2001), C_chls values for the slope region (0.125+/-0.031 µg/l) and for the outer shelf (0.130+/-0.040 µg/l) were similar. During strengthening of influence of warmer slope waters within area (from 29.08 to 13.09.2001), C_chls concentration within surface waters of the outer shelf was 0.152+/-0.039 µg/l and exceeded one for the slope region (0.094+/-0.004 µg/l) by factor 1.6. Against the background of low Cchls values, the High values of integral primary production in the water column (510-1010 mg C/m**2 per day) at low C_chls values measured within the area were determined both by high assimilation activity of phytoplankton and by the deep (30-40 m) maximum of primary production. Main reasons for formation of such a maximum were high chlorophyll concentration within the layer of the deep chlorophyll maximum (up to 0.5-2.5 µg/l) and in the relatively high solar irradiance within this layer varying from 1.4 to 8.6% of subsurface PAR.
Resumo:
Glacial landforms in northern Russia, from the Timan Ridge in the west to the east of the Urals, have been mapped by aerial photographs and satellite images supported by field observations. An east-west trending belt of fresh hummock-and-lake glaciokarst landscapes has been traced to the north of 67°N. The southern boundary of these landscapes is called the Markhida Line, which is interpreted as a nearly synchronous limit of the last ice sheet that affected this region. The hummocky landscapes are subdivided into three types according to the stage of postglacial modification: Markhida, Harbei and Halmer. The Halmer landscape on the Uralian piedmont in the east is the freshest, whereas the westernmost Markhida landscape is more eroded. The west- east gradient in morphology is considered to be a result of the time-transgressive melting of stagnant glacier ice and of the underlying permafrost. The pattern of ice-pushed ridges and other directional features reflects a dominant ice flow direction from the Kara Sea shelf. Traces of ice movement from the central Barents Sea are only discernible in the Pechora River left bank area west of 50°E. In the Polar Urals the horseshoe-shaped end moraines at altitudes of up to 560 m a.s.l. reflect ice movement up-valley from the Kara Ice Sheet, indicating the absence of a contemporaneous ice dome in the mountains. The Markhida moraines, superimposed onto the Eemian strata, represent the maximum ice sheet extent in the western part of the Pechora Basin during the Weichselian. The Markhida Line truncates the huge arcs of the Laya-Adzva and Rogovaya ice-pushed ridges protruding to the south. The latter moraines therefore reflect an older ice advance, probably also of Weichselian age. Still farther south, fluvially dissected morainic plateaus without lakes are of pre-Eemian age, because they plunge northwards under marine Eemian sediments. Shorelines of the large ice-dammed Lake Komi, identified between 90 and 110 m a.s.l. in the areas south of the Markhida Line, are radiocarbon dated to be older than 45 ka. The shorelines, incised into the Laya-Adzva moraines, morphologically interfinger with the Markhida moraines, indicating that the last ice advance onto the Russian mainland reached the Markhida Line during the Middle or Early Weichselian, before 45 ka ago.
Resumo:
Arctic vegetation is characterized by high spatial variability in plant functional type (PFT) composition and gross primary productivity (P). Despite this variability, the two main drivers of P in sub-Arctic tundra are leaf area index (LT) and total foliar nitrogen (NT). LT and NT have been shown to be tightly coupled across PFTs in sub-Arctic tundra vegetation, which simplifies up-scaling by allowing quantification of the main drivers of P from remotely sensed LT. Our objective was to test the LT-NT relationship across multiple Arctic latitudes and to assess LT as a predictor of P for the pan-Arctic. Including PFT-specific parameters in models of LT-NT coupling provided only incremental improvements in model fit, but significant improvements were gained from including site-specific parameters. The degree of curvature in the LT-NT relationship, controlled by a fitted canopy nitrogen extinction co-efficient, was negatively related to average levels of diffuse radiation at a site. This is consistent with theoretical predictions of more uniform vertical canopy N distributions under diffuse light conditions. Higher latitude sites had higher average leaf N content by mass (NM), and we show for the first time that LT-NT coupling is achieved across latitudes via canopy-scale trade-offs between NM and leaf mass per unit leaf area (LM). Site-specific parameters provided small but significant improvements in models of P based on LT and moss cover. Our results suggest that differences in LT-NT coupling between sites could be used to improve pan-Arctic models of P and we provide unique evidence that prevailing radiation conditions can significantly affect N allocation over regional scales.
Resumo:
The Shelf Seas of the Arctic are known for their large sea-ice production. This paper presents a comprehensive view of the Kara Sea sea-ice cover from high-resolution numerical modeling and space-borne microwave radiometry. As given by the latter the average polynya area in the Kara Sea takes a value of 21.2 × 10**3 km**2 ± 9.1 × 10**3 km**2 for winters (Jan.-Apr.) 1996/97 to 2000/01, being as high as 32.0 × 10**3 km**2 in 1999/2000 and below 12 × 10**3 km**2 in 1998/99. Day-to-day variations of the Kara Sea polynya area can be as high as 50 × 10**3 km**2. For the seasons 1996/97 to 2000/01 the modeled cumulative winter ice-volume flux out of the Kara Sea varied between 100 km**3/a and 350 km**3/a. Modeled high (low) ice export coincides with a high (low) average and cumulative polynya area, and with a low (high) sea-ice compactness in the Kara Sea from remote sensing data, and with a high (low) sea-ice drift speed across its northern boundary derived from independent model data for the winters 1996/97 to 2000/01.