969 resultados para Norwegian Americans
Resumo:
This paper reports results of a geochemical study of suspended particulate matter and particle fluxes in the Norwegian Sea above the Bear Island slope. Concentrations of suspended particles and the main components of suspended matter were determined in the euphotic, intermediate (clean water), and bottom nepheloid layers. It was shown that biogenic components are predominant in water above the nepheloid layer, whereas suspended matter of the nepheloid layer is formed by resuspension of lithogenic components of bottom sediments. Chemical compositions of suspended matter and material collected in sediment traps are identical.
Resumo:
Based on benthic and planktic foraminifera, Bolboforma, oxygen isotope measurements and seismic data, major changes in Miocene, Pliocene and Pleistocene paleoenvironments on the mid Norwegian shelf are discussed and a possible scenario of the late Cenozoic uplift history is given. The dating of the Neogene sequence has been done using foraminifera and Bolboforma. Four main assemblage zones have been identified with nine distinct subzones. Most of the Miocene sequence is preserved. The lower Miocene sediments contain only siliceous microfossils. A period of high fertility and upwelling in the study area prevailed. The early Miocene-early mid Miocene (15 Ma?) change from a siliceous to a calcareous rich microfauna, dominated by Nonion barleeanum, can be related to increased surface-water circulation due to overflow across the Iceland-Faeroe ridge. During the Miocene the temperature decreased in the study area. Evidence of increased amounts of coarser sediments may suggest that an uplift of the mainland areas occurred during the mid-late Miocene. Lower Pliocene sediments contain a foraminiferal fauna that seems to occur in slightly colder conditions than the late Miocene fauna suggesting a further cooling. Possibly, Arctic waters entered the study area in the early Pliocene. A very marked change in lithology (from compacted claystone to unconsolidated diamicton), fauna (from deep dwelling to shallow dwelling species) and seismic signature (from flat lying reflectors to prograding clinoforms) occurs during the mid?-late Pliocene. A two step cooling trend is indicated by the microfauna of these prograding wedges. (1) The first wedge buildups might have been associated with an uplift of the mainland during the early late Pliocene (mid Pliocene, ca. 4 Ma). However, the age determination is somewhat uncertain and may very well be of late Pliocene age. (2) The second step of wedge buildup is associated with a glacial phase where the dominating microfauna exists of arctic species. Large continental ice sheets might have occurred at this time reaching coastal areas and that possibly many of the geomorphological features such as the strandflat were made during this episode. The Pleistocene epoch is represented by an increased percentage of boreal foraminifera intermingled with high arctic species which indicates that interglacial-glacial cycles prevailed and the dynamics of the glacier system changed.
Resumo:
Snow height was measured by the Snow Depth Buoy 2015S22, an autonomous platform, drifting on Arctic sea ice, deployed during the Norwegian Young sea ICE cruise (N-ICE 2015) project. The resulting time series describes the evolution of snow depth as a function of place and time between 2015-03-01 and 2015-05-06 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The buoy was installed on first year ice. In addition to snow depth, geographic position (GPS), barometric pressure, air temperature, and ice surface temperature were measured. Negative values of snow depth occur if surface ablation continues into the sea ice. Thus, these measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). Records without any snow depth may still be used for sea ice drift analyses.
Resumo:
Snow height was measured by the Snow Depth Buoy 2015S26, an autonomous platform, drifting on Arctic sea ice, deployed during the Norwegian Young sea ICE cruise (N-ICE 2015) project. The resulting time series describes the evolution of snow depth as a function of place and time between 2015-01-24 and 2015-02-21 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The buoy was installed on first year ice. In addition to snow depth, geographic position (GPS), barometric pressure, air temperature, and ice surface temperature were measured. Negative values of snow depth occur if surface ablation continues into the sea ice. Thus, these measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). Records without any snow depth may still be used for sea ice drift analyses.
Resumo:
The Norwegian spring spawning (NSS) herring is an ecologically important fish stock in the Norwegian Sea, and with a catch volume exceeding one million tons a year it is also economically important and a valuable food source. In order to provide a baseline of the levels of contaminants in this fish stock, the levels of organohalogen compounds were determined in 800 individual herring sampled at 29 positions in the Norwegian Sea and off the coast of Norway. Due to seasonal migration, the herring were sampled where they were located during the different seasons. Concentrations of dioxins and dioxin-like PCBs, non-dioxin-like PCBs (PCB7) and PBDEs were determined in fillet samples of individual herring, and found to be relatively low, with means (min-max) of 0.77 (0.24-3.5) ngTEQ/kg wet weight (ww), 5.0 (1.4-24) µg/kg ww and 0.47 (0.091-3.1) µg/kg ww, respectively. The concentrations varied throughout the year due to the feeding- and spawning cycle: Starved, pre-spawning herring caught off the Norwegian coast in January-February had the highest levels and those caught in the Norwegian Sea in April-June, after further starvation and spawning, had the lowest levels. These results show that the concentrations of organohalogen compounds in NSS herring are relatively low and closely tied to their physiological condition, and that in the future regular monitoring of NSS herring should be made in the spawning areas off the Norwegian coast in late winter.
Resumo:
Near-surface sediments from the equatorial east Atlantic and the Norwegian Sea exhibit pronounced shear strength maxima in profiles from the peak Holocene and Pleistocene. These semi-indurated layers start to occur at 8-102 cm below the sediment surface and can be explained neither by the modal composition nor by the effective overburden pressure of the sediments. However, scanning electron microscope and microprobe data exhibit micritic crusts and crystal carpets, which are clearly restricted to (undisturbed) samples from indurated layers and form a manifest explanation for their origin. The minerals precipitated comprise calcite, aragonite, and in samples more proximal to the African continent SiO2 needles, and needles of as yet unidentified K-Mg-Fe-Al silicates, crusts of which dominate the indurated layers in the Norwegian Sea. By their stratigraphic position in deep-sea sediments the carbonate-based shear strength maxima are tentatively ascribed to dissolved adjacent pteropod layers from the early Holocene and hence to short-lived no-analogue events of early diagenesis. Possibly, they have been controlled by a reduced organic carbon flux, leading to increased aragonite preservation in the deep sea.