987 resultados para Northern Marginal Zone
Analysis of spring break-up and its effects on a biomass feedstock supply chain in northern Michigan
Resumo:
Demand for bio-fuels is expected to increase, due to rising prices of fossil fuels and concerns over greenhouse gas emissions and energy security. The overall cost of biomass energy generation is primarily related to biomass harvesting activity, transportation, and storage. With a commercial-scale cellulosic ethanol processing facility in Kinross Township of Chippewa County, Michigan about to be built, models including a simulation model and an optimization model have been developed to provide decision support for the facility. Both models track cost, emissions and energy consumption. While the optimization model provides guidance for a long-term strategic plan, the simulation model aims to present detailed output for specified operational scenarios over an annual period. Most importantly, the simulation model considers the uncertainty of spring break-up timing, i.e., seasonal road restrictions. Spring break-up timing is important because it will impact the feasibility of harvesting activity and the time duration of transportation restrictions, which significantly changes the availability of feedstock for the processing facility. This thesis focuses on the statistical model of spring break-up used in the simulation model. Spring break-up timing depends on various factors, including temperature, road conditions and soil type, as well as individual decision making processes at the county level. The spring break-up model, based on the historical spring break-up data from 27 counties over the period of 2002-2010, starts by specifying the probability distribution of a particular county’s spring break-up start day and end day, and then relates the spring break-up timing of the other counties in the harvesting zone to the first county. In order to estimate the dependence relationship between counties, regression analyses, including standard linear regression and reduced major axis regression, are conducted. Using realizations (scenarios) of spring break-up generated by the statistical spring breakup model, the simulation model is able to probabilistically evaluate different harvesting and transportation plans to help the bio-fuel facility select the most effective strategy. For early spring break-up, which usually indicates a longer than average break-up period, more log storage is required, total cost increases, and the probability of plant closure increases. The risk of plant closure may be partially offset through increased use of rail transportation, which is not subject to spring break-up restrictions. However, rail availability and rail yard storage may then become limiting factors in the supply chain. Rail use will impact total cost, energy consumption, system-wide CO2 emissions, and the reliability of providing feedstock to the bio-fuel processing facility.
Resumo:
Understanding the geometry and kinematics of the major structures of an orogen is important to elucidate its style of deformation, as well as its tectonic evolution. We describe the temporal and spatial changes in the state of stress of the trans-orogen area of the Calama-Olacapato-El Toro (COT) Fault Zone in the Central Andes, at about 24°S within the northern portion of the Puna Plateau between the Argentina-Chile border. The importance of the COT derives principally from the Quaternary-Holocene activity recognized on some segments, which may shed new light on its possible control on Quaternary volcanism and on the seismic hazard evaluation of the area. Field geological surveys along with kinematic analysis and numerical inversion of ∼140 new fault-slip measurements have revealed that this portion of the COT zone, previously considered a continuous, long-lived lineament, in reality has been subjected to three different kinematic regimes: 1) a Miocene transpressional phase with the maximum principal stress (σ1) chiefly trending NNE-SSW; 2) an extensional phase that started by 9 Ma, with a horizontal NW-SE-striking minimum principal stress (σ3) – permutations between σ2 and σ3 axes have been recognized at two sites – and 3) a left-lateral strike-slip phase with a horizontal ∼E-W &sigma1 and ∼N-S σ3 dating to the Late Pliocene-Quaternary. Spatially, in the Quaternary, the left-lateral component decreases toward the westernmost tip of the COT, where it transitions to extension; this produced to a N-S horst and graben structure. Hence, even if transcurrence is still active in the eastern portion of the COT, as focal mechanisms of crustal earthquakes indicate, our study demonstrates that extension is becoming the predominant structural style of deformation, at least in the western region. These major temporal and spatial changes in the tectonic regimes are attributed in part to changes in the magnitude of the boundary forces due to subduction processes. The overall orogen-perpendicular extension might be the result of vertical stress larger than both the horizontal stresses induced by gravitational effect of a thickened crust.
Resumo:
BACKGROUND: Although brucellosis (Brucella spp.) and Q Fever (Coxiella burnetii) are zoonoses of global importance, very little high quality data are available from West Africa. METHODS/PRINCIPAL FINDINGS: A serosurvey was conducted in Togo's main livestock-raising zone in 2011 in 25 randomly selected villages, including 683 people, 596 cattle, 465 sheep and 221 goats. Additionally, 464 transhumant cattle from Burkina Faso were sampled in 2012. The serological analyses performed were the Rose Bengal Test and ELISA for brucellosis and ELISA and the immunofluorescence assay (IFA) for Q Fever Brucellosis did not appear to pose a major human health problem in the study zone, with only 7 seropositive participants. B. abortus was isolated from 3 bovine hygroma samples, and is likely to be the predominant circulating strain. This may explain the observed seropositivity amongst village cattle (9.2%, 95%CI:4.3-18.6%) and transhumant cattle (7.3%, 95%CI:3.5-14.7%), with an absence of seropositive small ruminants. Exposure of livestock and people to C. burnetii was common, potentially influenced by cultural factors. People of Fulani ethnicity had greater livestock contact and a significantly higher seroprevalence than other ethnic groups (Fulani: 45.5%, 95%CI:37.7-53.6%; non-Fulani: 27.1%, 95%CI:20.6-34.7%). Appropriate diagnostic test cut-off values in endemic settings requires further investigation. Both brucellosis and Q Fever appeared to impact on livestock production. Seropositive cows were more likely to have aborted a foetus during the previous year than seronegative cows, when adjusted for age. This odds was 3.8 times higher (95%CI: 1.2-12.1) for brucellosis and 6.7 times higher (95%CI: 1.3-34.8) for Q Fever. CONCLUSIONS: This is the first epidemiological study of zoonoses in Togo in linked human and animal populations, providing much needed data for West Africa. Exposure to Brucella and C. burnetii is common but further research is needed into the clinical and economic impact.
Resumo:
Ground penetrating radar (GPR) was used to determine peat basin geometry and the spatial distribution of free-phase biogenic gasses in two separate units of a northern peatland (Central and Southern Unit of Caribou Bog, Maine). The Central Unit is characterized by a deep basin structure (15 m maximum depth) and a raised (eccentric) bog topographic profile (up to 2 m topographic variation). Here numerous regions of electromagnetic (EM) wave scattering are considered diagnostic of the presence of extensive free-phase biogenic gas. In contrast, the Southern Unit is shallower (8 m maximum depth) and has a slightly convex upwards bog profile (less than 1 m topographic variation), and areas of EM wave scattering are notably absent. The biogenic gas zones interpreted from GPR in the Central Unit are associated with: (1) wooded heath vegetation at the surface, (2) open pools at the surface, (3) high water table elevations near the center of the basin, and (4) a region of overpressure (at approximately 5 m depth) immediately below the zone of free-phase gas accumulation. The latter suggests (1) a transient pressure head associated with low hydraulic conductivity resulting from the biogenic gasses themselves or confining layers in the peat that restrict both gas release and groundwater flow and/or (2) overpressure in the peat column as a result of the gas buildup itself. In contrast, the Southern Unit, where zones of EM scattering are absent, is characterized by: (1) predominantly shrub vegetation, (2) a lack of open pools, (3) only minor variations (less than 1 m) in water table elevation throughout the entire unit; and (4) generally upward groundwater flow throughout the basin. The results illustrate the nonuniformity of free-phase biogenic gas distribution at the peat basin scale and provide insights into the processes and controls associated with CH4 and CO2 accumulation in peatlands.
Resumo:
The geologic structures and metamorphic zonation of the northwestern Indian Himalaya contrast significantly with those in the central and eastern parts of the range, where the high-grade metamorphic rocks of the High Himalayan Crystalline (HHC) thrust southward over the weakly metamorphosed sediments of the Lesser Himalaya along the Main Central Thrust (MCT). Indeed, the hanging wall of the MCT in the NW Himalaya mainly consists of the greenschist facies metasediments of the Chamba zone, whereas HHC high-grade rocks are exposed more internally in the range as a large-scale dome called the Gianbul dome. This Gianbul dome is bounded by two oppositely directed shear zones, the NE-dipping Zanskar Shear Zone (ZSZ) on the northern flank and the SW-dipping Miyar Shear Zone (MSZ) on the southern limb. Current models for the emplacement of the HHC in NW India as a dome structure differ mainly in terms of the roles played by both the ZSZ and the MSZ during the tectonothermal evolution of the HHC. In both the channel flow model and wedge extrusion model, the ZSZ acts as a backstop normal fault along which the high-grade metamorphic rocks of the HHC of Zanskar are exhumed. In contrast, the recently proposed tectonic wedging model argues that the ZSZ and the MSZ correspond to one single detachment system that operates as a subhorizontal backthrust off of the MCT. Thus, the kinematic evolution of the two shear zones, the ZSZ and the MSZ, and their structural, metamorphic and chronological relations appear to be diagnostic features for discriminating the different models. In this paper, structural, metamorphic and geochronological data demonstrate that the MSZ and the ZSZ experienced two distinct kinematic evolutions. As such, the data presented in this paper rule out the hypothesis that the MSZ and the ZSZ constitute one single detachment system, as postulated by the tectonic wedging model. Structural, metamorphic and geochronological data are used to present an alternative tectonic model for the large-scale doming in the NW Indian Himalaya involving early NE-directed tectonics, weakness in the upper crust, reduced erosion at the orogenic front and rapid exhumation along both the ZSZ and the MSZ.
Resumo:
The interaction between sibling species that share a zone of contact is a multifaceted relationship affected by climate change [ 1, 2 ]. Between sibling species, interactions may occur at whole-organism (direct or indirect competition) or genomic (hybridization and introgression) levels [ 3–5 ]. Tracking hybrid zone movements can provide insights about influences of environmental change on species interactions [ 1 ]. Here, we explore the extent and mechanism of movement of the contact zone between black-capped chickadees (Poecile atricapillus) and Carolina chickadees (Poecile carolinensis) at whole-organism and genomic levels. We find strong evidence that winter temperatures limit the northern extent of P. carolinensis by demonstrating a current-day association between the range limit of this species and minimum winter temperatures. We further show that this temperature limitation has been consistent over time because we are able to accurately hindcast the previous northern range limit under earlier climate conditions. Using genomic data, we confirm northward movement of this contact zone over the past decade and highlight temporally consistent differential—but limited—geographic introgression of alleles. Our results provide an informative example of the influence of climate change on a contact zone between sibling species.
Resumo:
Air was sampled from the porous firn layer at the NEEM site in Northern Greenland. We use an ensemble of ten reference tracers of known atmospheric history to characterise the transport properties of the site. By analysing uncertainties in both data and the reference gas atmospheric histories, we can objectively assign weights to each of the gases used for the depth-diffusivity reconstruction. We define an objective root mean square criterion that is minimised in the model tuning procedure. Each tracer constrains the firn profile differently through its unique atmospheric history and free air diffusivity, making our multiple-tracer characterisation method a clear improvement over the commonly used single-tracer tuning. Six firn air transport models are tuned to the NEEM site; all models successfully reproduce the data within a 1σ Gaussian distribution. A comparison between two replicate boreholes drilled 64 m apart shows differences in measured mixing ratio profiles that exceed the experimental error. We find evidence that diffusivity does not vanish completely in the lock-in zone, as is commonly assumed. The ice age- gas age difference (1 age) at the firn-ice transition is calculated to be 182+3−9 yr. We further present the first intercomparison study of firn air models, where we introduce diagnostic scenarios designed to probe specific aspects of the model physics. Our results show that there are major differences in the way the models handle advective transport. Furthermore, diffusive fractionation of isotopes in the firn is poorly constrained by the models, which has consequences for attempts to reconstruct the isotopic composition of trace gases back in time using firn air and ice core records.
Resumo:
The convergence between the Eurasian and Arabian plates has created a complicated structural setting in the Eastern Turkish high plateau (ETHP), particularly around the Karlıova Triple Junction (KTJ) where the Eurasian, Arabian, and Anatolian plates intersect. This region of interest includes the junction of the North Anatolian Shear Zone (NASZ) and the East Anatolian Shear Zone (EASZ), which forms the northern border of the westwardly extruding Anatolian Scholle and the western boundary of the ETHP, respectively. In this study, we focused on a poorly studied component of the KTJ, the Varto Fault Zone (VFZ), and the adjacent secondary structures, which have complex structural settings. Through integrated analyses of remote sensing and field observations, we identified a widely distributed transpressional zone where the Varto segment of the VFZ forms the most northern boundary. The other segments, namely, the Leylekdağ and Çayçatı segments, are oblique-reverse faults that are significantly defined by uplifted topography along their strikes. The measured 515 and 265 m of cumulative uplifts for Mt. Leylek and Mt. Dodan, respectively, yield a minimum uplift rate of 0.35 mm/a for the last 2.2 Ma. The multi-oriented secondary structures were mostly correlated with “the distributed strike-slip” and “the distributed transpressional” in analogue experiments. The misfits in strike of some of secondary faults between our observations and the experimental results were justified by about 20° to 25° clockwise restoration of all relevant structures that were palaeomagnetically measured to have happened since ~ 2.8 Ma ago. Our detected fault patterns and their true nature are well aligned as being part of a transpressional tectonic setting that supports previously suggested stationary triple junction models.
Resumo:
The Ivrea–Verbano Zone (IVZ), northern Italy, exposes an attenuated section through the Permian lower crust that records high-temperature metamorphism under lower crustal conditions and a protracted history of extension and exhumation associated partly with the Jurassic opening of the Alpine Tethys ocean. This study presents SHRIMP U–Pb geochronology of rutile from seven granulite facies metapelites from the base of the IVZ, collected from locations spanning ~35 km along the strike of Paleozoic fabrics. Rutile crystallised during Permian high-temperature metamorphism and anatexis, yet all samples give Jurassic rutile U–Pb ages that record cooling through 650–550 °C. Rutile age distributions are dominated by a peak at ~160 Ma, with a subordinate peak at ~175 Ma. Both ~160 and ~175 Ma age populations show excellent agreement between samples, indicating that the two distinctive cooling stages they record were synchronous on a regional scale. The ~175 Ma population is interpreted to record cooling in the footwall of rift-related faults and shear zones, for which widespread activity in the Lower Jurassic has been documented along the western margin of the Adriatic plate. The ~160 Ma age population postdates the activity of all known rift-related structures within the Adriatic margin, but coincides with extensive gabbroic magmatism and exhumation of sub-continental mantle to the floor of the Alpine Tethys, west of the Ivrea Zone. We propose that this ~160 Ma early post-rift age population records regional cooling following episodic heating of the distal Adriatic margin, likely related to extreme lithospheric thinning and associated advection of the asthenosphere to shallow levels. The partial preservation of the ~175 Ma age cluster suggests that the post-rift (~160 Ma) heating pulse was of short duration. The regional consistency of the data presented here, which is in contrast to many other thermochronometers in the IVZ, demonstrates the value of the rutile U–Pb technique for probing the thermal evolution of high-grade metamorphic terrains. In the IVZ, a significant decoupling between Zr-in-rutile temperatures and U–Pb ages of rutile is observed, with the two systems recording events ~120 Ma apart.
Resumo:
Time series of satellite measurements are used to describe patterns of surface temperature and chlorophyll associated with the 1996 cold La Nina phase and the 1997-1998 warm El Nino phase of the El Nino - Southern Oscillation cycle in the upwelling region off northern Chile. Surface temperature data are available through the entire study period. Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data first became available in September 1997 during a relaxation in El Nino conditions identified by in situ hydrographic data. Over the time period of coincident satellite data, chlorophyll patterns closely track surface temperature patterns. Increases both in nearshore chlorophyll concentration and in cross-shelf extension of elevated concentrations are associated with decreased coastal temperatures during both the relaxation in El Nino conditions in September-November 1997 and the recovery from EI Nino conditions after March 1998. Between these two periods during austral summer (December 1997 to March 1998) and maximum El Nino temperature anomalies, temperature patterns normally associated with upwelling were absent and chlorophyll concentrations were minimal. Cross-shelf chlorophyll distributions appear to be modulated by surface temperature frontal zones and are positively correlated with a satellite-derived upwelling index. Frontal zone patterns and the upwelling index in 1996 imply an austral summer nearshore chlorophyll maximum, consistent with SeaWiFS data from I 1998-1999, after the El Nino. SeaWiFS retrievals in the data set used here are higher than in situ measurements by a factor of 2-4; however, consistency in the offset suggests relative patterns are valid.
Resumo:
In the Shackleton Range of East Antarctica, garnet-bearing ultramafic rocks occur as lenses in supracrustal high-grade gneisses. In the presence of olivine, garnet is an unmistakable indicator of eclogite facies metamorphic conditions. The eclogite facies assemblages are only present in ultramafic rocks, particularly in pyroxenites, whereas other lithologies - including metabasites - lack such assemblages. We conclude that under high-temperature conditions, pyroxenites preserve high-pressure assemblages better than isofacial metabasites, provided the pressure is high enough to stabilize garnet-olivine assemblages (i.e. >=18-20 kbar). The Shackleton Range ultramafic rocks experienced a clockwise P-T path and peak conditions of 800-850 °C and 23-25 kbar. These conditions correspond to ~70 km depth of burial and a metamorphic gradient of 11-12 °C/km that is typical of a convergent plate-margin setting. The age of metamorphism is defined by two garnet-whole-rock Sm-Nd isochrons that give ages of 525 ± 5 and 520 ± 14 Ma corresponding to the time of the Pan-African orogeny. These results are evidence of a Pan-African suture zone within the northern Shackleton Range. This suture marks the site of a palaeo-subduction zone that likely continues to the Herbert Mountains, where ophiolitic rocks of Neoproterozoic age testify to an ocean basin that was closed during Pan-African collision. The garnet-bearing ultramafic rocks in the Shackleton Range are the first known example of eclogite facies metamorphism in Antarctica that is related to the collision of East and West Gondwana and the first example of Pan-African eclogite facies ultramafic rocks worldwide. Eclogites in the Lanterman Range of the Transantarctic Mountains formed during subduction of the palaeo-Pacific beneath the East Antarctic craton.
Resumo:
Sediments recovered during Ocean Drilling Program (ODP) Leg 123 from the Argo Abyssal Plain (AAP) consist largely of turbidites derived from the adjacent Australian continental margin. The oldest abundant turbidites are Valanginian-Aptian in age and have a mixed (smarl) composition; they contain subequal amounts of calcareous and siliceous biogenic components, as well as clay and lesser quartz. Most are thin-bedded, fine sand- to mud-sized, and best described by Stow and Piper's model (1984) for fine-grained biogenic turbidites. Thicker (to 3 m), coarser-grained (medium-to-coarse sand-sized) turbidites fit Bouma's model (1962) for sandy turbidites; these generally are base-cut-out (BCDE, BDE) sequences, with B-division parallel lamination as the dominant structure. Parallel laminae most commonly concentrate quartz and/or calcispheres vs. lithic clasts or clay, but distinctive millimeter- to centimeter-thick, radiolarian-rich laminae occur in both fine- and coarse-grained Valanginian-Hauterivian turbidites. AAP turbidites were derived from relatively deep parts of the continental margin (outer shelf, slope, or rise) that lay below the photic zone, but above the calcite compensation depth (CCD). Biogenic components are largely pelagic (calcispheres, foraminifers, radiolarians, nannofossils); lesser benthic foraminifers are characteristic of deep-water (abyssal to bathyal) environments. Abundant nonbiogenic components are mostly clay and clay clasts; smectite is the dominant clay species, and indicates a volcanogenic provenance, most likely the Triassic-Jurassic volcanic suite exposed along the northern Exmouth Plateau. Lower Cretaceous smarl turbidites were generated during eustatic lowstands and may have reached the abyssal plain via Swan Canyon, a submarine canyon thought to have formed during the Late Jurassic. In contrast to younger AAP turbidites, however, Lower Cretaceous turbidites are relatively fine-grained and do not contain notably older reworked fossils. Early in its history, the northwest Australian margin provided mainly contemporaneous slope sediment to the AAP; marginal basins adjacent to the continent trapped most terrigenous detritus, and pronounced canyon incisement did not occur until Late Cretaceous and, especially, Cenozoic time.
Heat flow in the Central Basin of the Indian Ocean and the northern part of the Afanasy Nikitin Rise
Resumo:
Heat flux data obtained during Cruise 20 of R/V Akademik Mstislav Keldysh in the Central Basin of the Indian Ocean and northern part of the Afanasy Nikitin Rise are presented. Thermal conditions on the rise are not associated with an anomalous zone of the large tectonic deformation block north of it. Geothermal data indicate that the Afanasy Nikitin Rise has formed near an ancient spreading axis. Distribution of measured heat flux values indicates an additional source of heat in the Central Basin resulting from dissipative heating of the crust in the two-stage plate tectonics model.
Resumo:
Sediment dynamics in limnic, fluvial and marine environments can be assessed by granulometric and rock-magnetic methodologies. While classical grain-size analysis by sieving or settling mainly bears information on composition and transport, the magnetic mineral assemblages reflect to a larger extent the petrology and weathering conditions in the sediment source areas. Here, we combine both methods to investigate Late Quaternary marine sediments from five cores along a transect across the continental slope off Senegal. This region near the modern summer Intertropical Convergence Zone is particularly sensitive to climate change and receives sediments from several aeolian, fluvial and marine sources. From each of the investigated five GeoB sediment cores (494-2956 m water depth) two time slices were processed which represent contrasting climatic conditions: the arid Heinrich Stadial 1 (~ 15 kyr BP) and the humid Mid Holocene (~ 6 kyr BP). Each sediment sample was split into 16 grain-size fractions ranging from 1.6 to 500 µm. Concentration and grain-size indicative magnetic parameters (susceptibility, SIRM, HIRM, ARM and ARM/IRM) were determined at room temperature for each of these fractions. The joint consideration of whole sediment and magnetic mineral grain-size distributions allows to address several important issues: (i) distinction of two aeolian sediment fractions, one carried by the north-easterly trade winds (40-63 µm) and the other by the overlying easterly Harmattan wind (10-20 µm) as well as a fluvial fraction assigned to the Senegal River (< 10 µm); (ii) identification of three terrigenous sediment source areas: southern Sahara and Sahel dust (low fine-grained magnetite amounts and a comparatively high haematite content), dust from Senegalese coastal dunes (intermediate fine-grained magnetite and haematite contents) and soils from the upper reaches of the Senegal River (high fine-grained magnetite content); (iii) detection of partial diagenetic dissolution of fine magnetite particles as a function of organic input and shore distance; (iv) analysis of magnetic properties of marine carbonates dominating the grain-size fractions 63-500 µm.