995 resultados para North Sea oil


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early recruitment indices based on larval fish data from the Continuous Plankton Recorder (CPR) have the potential to inform stock assessments of Ammodytes marinus in the North Sea. We evaluate whether the CPR data are reliable for sandeel larvae. Spatially, CPR larval data were comparable with catches by dedicated larval samplers (Gulf and bongo nets) during ICES coordinated surveys in 2004 and 2009. ICES data are also used to explore environmental influences on sandeel distributions. Temporally, CPR data correlate with larval data from plankton surveys off Stonehaven (1999–2005), with sandeel 0-group trawl data at the east Fair Isle ground (since 1984), and with recruitment data (since 1983) for the Dogger Banks stock assessment area. Therefore, CPR data may provide an early recruit index of relative abundance for the Dogger Banks assessment area, where the majority of the commercial catch of A. marinus is taken, and the Wee Bankie area that is particularly important for seabird foraging. While warm conditions may stimulate the production of sandeel larvae, their natural mortality is typically greater, in the Dogger Banks and Wadden Sea areas, when the larvae are hatched in warm years and/or with abundant 1-year-old sandeel that are likely to be cannibalistic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the 1980s, a rapid increase in the Phytoplankton Colour Index (PCI), a semiquantitative visual estimate of algal biomass, was observed in the North Sea as part of a regionwide regime shift. Two new data sets created from the relationship between the PCI and SeaWiFS chlorophyll a (Chl a) quantify differences in the previous and current regimes for both the anthropogenically affected coastal North Sea and the comparatively unaffected open North Sea. The new regime maintains a 13% higher Chl a concentration in the open North Sea and a 21% higher concentration in coastal North Sea waters. However, the current regime has lower total nitrogen and total phosphorus concentrations than the previous regime, although the molar N: P ratio in coastal waters is now well above the Redfield ratio and continually increasing. Besides becoming warmer, North Sea waters are also becoming clearer (i.e., less turbid), thereby allowing the normally light-limited coastal phytoplankton to more effectively utilize lower concentrations of nutrients. Linear regression analyses indicate that winter Secchi depth and sea surface temperature are the most important predictors of coastal Chl a, while Atlantic inflow is the best predictor of open Chl a; nutrient concentrations are not a significant predictor in either model. Thus, despite decreasing nutrient concentrations, Chl a continues to increase, suggesting that climatic variability and water transparency may be more important than nutrient concentrations to phytoplankton production at the scale of this study.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regime shift and principal component analysis of a spatially disaggregated database capturing time-series of climatic, nutrient and plankton variables in the North Sea revealed considerable covariance between groups of ecosystem indicators. Plankton and climate time-series span the period 1958–2003, those of nutrients start in 1980. In both regions, the period from 1989 to 2001 identified in principal component 1 had warmer surface waters, higher Atlantic inflow and stronger winds, than the periods before or after. However, it was preceded by a regime shift in both open (PC2) and coastal (PC3) waters during 1977 towards more hours of sunlight and higher water temperature, which lasted until 1997. The relative influence of nutrient availability and climatic forcing differed between open and coastal North Sea regions. Inter-annual variability in phytoplankton dynamics of the open North Sea was primarily regulated by climatic forcing, specifically by sea surface temperature, Atlantic inflow and co-varying wind stress and NAO. Coastal phytoplankton variability, however, was regulated by insolation and sea surface temperature, as well as Si availability, but not by N or P. Regime shifts in principal components of hydrographic and climatic variables (explaining 55 and 61% of the variance in coastal and open water variables) were detected using Rodionov's sequential t-test. These shifts in hydroclimatic variables which occurred around 1977, 1989, 1997 and 2001, were synchronized in open and coastal waters, and were tracked by open water chlorophyll and copepods, but not by coastal plankton. North–central–south or open-coastal spatial breakdowns of the North Sea explained similar amounts of variability in most ecosystem indicators with the exception of diatom abundance and chlorophyll concentration, which were clearly better explained using the open-coastal configuration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The North Sea cod (Gadus morhua, L.) stock has continuously declined over the past four decades linked with overfishing and climate change. Changes in stock structure due to overfishing have made the stock largely dependent on its recruitment success, which greatly relies on environmental conditions. Here we focus on the spatio-temporal variability of cod recruitment in an effort to detect changes during the critical early life stages. Using International Bottom Trawl Survey (IBTS) data from 1974 to 2011, a major spatio-temporal change in the distribution of cod recruits was identified in the late 1990s, characterized by a pronounced decrease in the central and southeastern North Sea stock. Other minor spatial changes were also recorded in the mid-1980s and early 1990s. We tested whether the observed changes in recruits distribution could be related with direct (i.e. temperature) and/or indirect (i.e. changes in the quantity and quality of zooplankton prey) effects of climate variability. The analyses were based on spatially-resolved time series, i.e. sea surface temperature (SST) from the Hadley Center and zooplankton records from the Continuous Plankton Recorder Survey. We showed that spring SST increase was the main driver for the most recent decrease in cod recruitment. The late 1990s were also characterized by relatively low total zooplankton biomass, particularly of energy-rich zooplankton such as the copepod Calanus finmarchicus, which have further contributed to the decline of North Sea cod recruitment. Long-term spatially-resolved observations were used to produce regional distribution models that could further be used to predict the abundance of North Sea cod recruits based on temperature and zooplankton food availability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmentally induced change appears to be impacting the recruitment of North Sea herring (Clupea harengus). Despite simultaneously having a large adult population, historically low exploitation, and Marine Stewardship Council accreditation (implying sustainability), there have been an unprecedented 6 sequential years of poor juvenile production (recruitment). Analysis suggests that the poor recruitment arises during the larval overwintering phase, with recent survival rates greatly reduced. Contemporary warming of the North Sea has caused significant changes in the plankton community, and a recently identified regime shift around 2000 shows close temporal agreement with the reduced larval survival. It is, therefore, possible that we are observing the first consequences of this planktonic change for higher trophic levels. There is no indication of a recovery in recruitment in the short term. Fishing mortality is currently outside the agreed management plan, and forecasts show a high risk of the stock moving outside safe biological limits soon, potentially precipitating another collapse of the stock. However, bringing the realized fishing mortality back in line with the management plan would likely alleviate the problem. This illustrates again that recruitment is influenced by more than just spawning-stock biomass, and that changes in other factors can be of equal, or even greater, importance. In such dynamically changing environments, recent management success does not necessarily guarantee future sustainability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comprehensive, aggregate nutrient budgets were established for two compartments of the North Sea, the shallow coastal and deeper open regions, and for three different periods, representing pre-eutrophication (∼1950), eutrophication (∼1990) and contemporary (∼2000) phases. The aim was to quantify the major budget components, to identify their sources of variability, to specify the anthropogenic components, and to draw implications for past and future policy. For all three periods, open North Sea budgets were dominated (75%) by fluxes from and to the North-East Atlantic; sediment exchange was of secondary importance (18%). For the coastal North Sea, fluxes during the eutrophication period were dominated by sediment exchange (49% of all inputs), followed by exchange with the open sea (21%), and anthropogenic inputs (19%). Between 1950 and 1990, N-loading of coastal waters increased by a factor of 1.62 and P-loading by 1.45. These loads declined after 1990. Interannual variability in Atlantic inflow was found to correspond to a variability of 11% in nutrient load to the open North Sea. Area-specific external loads of both the open and coastal North Sea were below Vollenweider-type critical loads when expressed relative to depth and flushing. External area-specific load of the coastal North Sea has declined since 1990 from 1.8 to about 1.4 g P m−2 y−1 in 2000, which is close to the estimate of 1.3 for 1950. N-load declined less, leading to an increase in N/P ratio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Top predators, particularly seabirds, have repeatedly been suggested as indicators of marine ecosystem status. One region currently under pressure from human fisheries and climate change is the North Sea. Standardized seabird monitoring data have been collected on the Isle of May, an important seabird colony in the northwestern North Sea, over the last 10–20 years. Over this period oceanographic conditions have varied markedly, and between 1990 and 1999 a major industrial fishery for sandlance (Ammodytes marinus), the main prey of most seabird species, was prosecuted nearby. Sandlance fishing grounds close to seabird colonies down the east coast of the UK were closed in 2000 in an attempt to improve foraging opportunities for breeding seabirds, particularly black-legged kittiwakes (Rissa tridactyla). Initially this closure seemed to be beneficial for kittiwakes with breeding success recovering to pre-fishery levels. However, despite the ban continuing, kittiwakes and many other seabird species in the North Sea suffered severe breeding failures in 2004. In this paper, we test the predictive power of four previously established correlations between kittiwake breeding success and climatic/trophic variables to explain the observed breeding success at the Isle of May in 2004. During the breeding season, kittiwakes at this colony switch from feeding on 1+ group to 0 group sandlance, and results up until 2003 indicated that availability of both age classes had a positive effect on kittiwake breeding success. The low breeding success of kittiwakes in 2004 was consistent with the late appearance and small body size of 0 group sandlance, but at odds with the two variables likely to operate via 1 group availability (lagged winter sea surface temperature and larval sandlance cohort strength in 2003). The reason for the discrepancy is currently unknown, but analysis of 1 group sandlance body composition indicated that lipid content in 2004 was extremely low, and thus fish eaten by kittiwakes during pre-breeding and early incubation were likely to be of poor quality. Monitoring of reproductive success of kittiwakes, although useful, was clearly not sufficient to tease apart the complex causation underlying the 2004 event. Monitoring programs such as this, therefore, need to be complemented by detailed research to identify the mechanisms involved, and to attribute and predict the effects of natural and human-induced environmental change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eutrophication is a process resulting from an increase in anthropogenic nutrient inputs from rivers and other sources, the consequences of which can include enhanced algal biomass, changes in plankton community composition and oxygen depletion near the seabed. Within the context of the Marine Strategy Framework Directive, indicators (and associated threshold) have been identified to assess the eutrophication status of an ecosystem. Large databases of observations (in situ) are required to properly assess the eutrophication status. Marine hydrodynamic/ecosystem models provide continuous fields of a wide range of ecosystem characteristics. Using such models in this context could help to overcome the lack of in situ data, and provide a powerful tool for ecosystem-based management and policy makers. Here we demonstrate a methodology that uses a combination of model outputs and in situ data to assess the risk of eutrophication in the coastal domain of the North Sea. The risk of eutrophication is computed for the past and present time as well as for different future scenarios. This allows us to assess both the current risk and its sensitivity to anthropogenic pressure and climate change. Model sensitivity studies suggest that the coastal waters of the North Sea may be more sensitive to anthropogenic rivers loads than climate change in the near future (to 2040).