995 resultados para North Atlantic westery airflow
Resumo:
The impact of ancient fertilization practices on the biogeochemistry of arable soils on the remote Scottish island of Hirta, St Kilda was investigated. The island was relatively unusual in that the inhabitants exploited seabird colonies for food, enabling high population densities to be sustained on a limited, and naturally poor, soil resource. A few other Scottish islands, the Faeroes and some Icelandic Islands, had similar cultural dependence on seabirds. Fertilization with human and animal waste streams (mainly peat ash and bird carcases) on Hirta over millennia has led to over-deepened, nutrient-rich soils (plaggen). This project set out to examine if this high rate of fertilization had adversely impacted the soil, and if so, to determine which waste streams were responsible. Arable soils were considerably elevated in Pb and Zn compared to non-arable soils. Using Pb isotope signatures and analysis of the waste streams, it was determined that this pollution came from peat and turf ash (Pb and Zn) and from bird carcases (Zn). This was also confirmed by (13)C and (15)N analysis of the profiles which showed that soil organic matter was highly enriched in marine-derived C and N compared to non-arable soils. The pollution of such a remote island may be typical of other 'bird culture' islands, and peat ash contamination of marginal arable soils at high latitudes may be widespread in terms of geographical area, but less intense at specific locations due to lower population densities than on Hirta.
Resumo:
It is now accepted that changes in the Earth’s climate are having a profound effect on the distributions of a wide variety of species. One aspect of these changes that has only recently received any attention, however, is their potential effect on levels of within-species genetic diversity. Theoretical, empirical and modelling studies suggest that the impact of trailing-edge population extirpation on range-wide intraspecific diversity will be most pronounced in species that harbour the majority of their genetic variation at low latitudes as a result of changes during the Quaternary glaciations. In the present review, I describe the historical factors that have determined current patterns of genetic variation across the ranges of Northern North Atlantic species, highlight the fact that the majority of these species do indeed harbour a disproportionate level of genetic diversity in rear-edge populations, and outline how combined species distribution modelling and genetic analyses can provide insights into the potential effects of climate change on their overall genetic diversity.
Resumo:
Magnetic properties of eight particle size ranges from nine locations in Iceland and 26 locations in southern Greenland reveal the importance of source variation for our understanding of paleomagnetic and environmental magnetic records in the marine environment. These terrestrial samples show varying degrees of particle size dependence with all samples showing that the silt fraction possesses greater concentrations of ferrimagnetic minerals than either clay or sand. Fine pseudo-single domain (PSD) size magnetic grains dominate the magnetic assemblage of all Icelandic fractions. In contrast, Greenlandic samples possess greater variation in magnetic grain size; only fine silt and clay are as magnetically fine as the Icelandic PSD grains, while Greenlandic silts and sands are dominated by coarser PSD and multi-domain grains. These observations from potential marine sediment sources suggest that the silt size fraction is a likely driver for much of the concentration-dependent parameters derived from bulk magnetic records and that the magnetic grain size of the silt fraction can be used to discriminate between Icelandic and Greenlandic sources. Using these results to examine magnetic grain size records from marine sediment cores collected across the northern North Atlantic suggests that source, not just transport-controlled physical grain-size, has a significant impact on determining the magnetic grain size at a particular location. Homogeneity of magnetic grain size in Icelandic sediments at least partially explains the consistent quality of paleomagnetic records derived from cores surrounding Iceland and their ability to buffer large environmental changes. © 2013 Elsevier B.V.
Resumo:
Cooling and sinking of dense saline water in the Norwegian–Greenland Sea is essential for the formation of North Atlantic Deep Water. The convection in the Norwegian–Greenland Sea allows for a northward flow of warm surface water and southward transport of cold saline water. This circulation system is highly sensitive to climate change and has been shown to operate in different modes. In ice cores the last glacial period is characterized by millennial-scale Dansgaard–Oeschger (D–O) events of warm interstadials and cold stadials. Similar millennial-scale variability (linked to D–O events) is evident from oceanic cores, suggesting a strong coupling of the atmospheric and oceanic circulations system. Particularly long-lasting cold stadials correlate with North Atlantic Heinrich events, where icebergs released from the continents caused a spread of meltwater over the northern North Atlantic and Nordic seas. The meltwater layer is believed to have caused a stop or near-stop in the deep convection, leading to cold climate. The spreading of meltwater and changes in oceanic circulation have a large influence on the carbon exchange between atmosphere and the deep ocean and lead to profound changes in the 14C activity of the surface ocean. Here we demonstrate marine 14C reservoir ages (R) of up to c. 2000 years for Heinrich event H4. Our R estimates are based on a new method for age model construction using identified tephra layers and tie-points based on abrupt interstadial warmings.
Resumo:
In this study, contributions of both local steric and remote baroclinic effects (i.e., steric variations external to the region of interest) to the inter-annual variability of winter sea level in the North Sea, with respect to the North Atlantic Oscillation (NAO), for the period of 1953–2010 are investigated. On inter-annual time scales in this period, the NAO is significantly correlated to sea level variations in the North Sea only in the winter months (December–March), while its correlation to sea temperature over much of the North Sea is only significant in January and February. The discrepancy in sea level between observations and barotropic tide and surge models forced by tides and local atmospheric forcing, i.e., local atmospheric pressure effects and winds, in the present study are found to be consistent with previous studies. In the North Sea, local thermosteric effects caused by thermal expansion play a minor role on winter-mean NAO related sea level variability compared with atmospheric forcing. This is particularly true in the southeastern North Sea where water depths are mostly less than 25 m. Our calculations demonstrate that the discrepancy can be mostly explained by remote baroclinic effects, which appear as water mass exchanges on the continental shelf and are therefore only apparent in ocean bottom pressure. In the North Sea, NAO related sea level variations seem to be a hybrid of barotropic and baroclinic processes. Hence, they can only be adequately modelled with three-dimensional baroclinic ocean models that include contributions of baroclinic effects and large-scale atmospheric forcing external to the region of interest.
Resumo:
We present a new, diatom-based sea-level reconstruction for Iceland spanning the last -500 years, and investigate the possible mechanisms driving the sea-level changes. A sea-level reconstruction from near the Icelandic low pressure system is important as it can improve understanding of ocean-atmosphere forcing on North Atlantic sea-level variability over multi-decadal to centennial timescales. Our reconstruction is from Viarhólmi salt marsh in Snæfellsnes in western Iceland, a site from where we previously obtained a 2000-yr record based upon less precise sea-level indicators (salt-marsh foraminifera). The 20th century part of our record is corroborated by tide-gauge data from Reykjavik. Overall, the new reconstruction shows ca0.6m rise of relative sea level during the last four centuries, of which ca0.2m occurred during the 20th century. Low-amplitude and high-frequency sea-level variability is super-imposed on the pre-industrial long-term rising trend of 0.65m per 1000 years. Most of the relative sea-level rise occurred in three distinct periods: AD 1620-1650, AD 1780-1850 and AD 1950-2000, with maximum rates of ~3±2mm/yr during the latter two of these periods. Maximum rates were achieved at the end of large shifts (from negative to positive) of the winter North Atlantic Oscillation (NAO) Index as reconstructed from proxy data. Instrumental data demonstrate that a strong and sustained positive NAO (a deep Icelandic Low) generates setup on the west coast of Iceland resulting in rising sea levels. There is no strong evidence that the periods of rapid sea-level rise were caused by ocean mass changes, glacial isostatic adjustment or regional steric change. We suggest that wind forcing plays an important role in causing regional-scale coastal sea-level variability in the North Atlantic, not only on (multi-)annual timescales, but also on multi-decadal to centennial timescales.
Resumo:
Climate change during the last deglaciation was strongly influenced by the „bipolar seesaw‟, producing antiphase climate responses between the North and South Atlantic. However, mounting evidence demands refinements of this model, with the occurrence of abrupt events in southern low to mid latitudes occurring in-phase with North Atlantic climate. Improved constraints on the north-south phasing and spatial extent of these events are therefore critical to
understanding the mechanisms that propagate abrupt events within the climate system. We present a 19,400 year multi-proxy record of climate change obtained from a rock hyrax midden in southernmost Africa. Arid anomalies in phase with the Younger Dryas and 8.2 ka events are apparent, indicating a clear shift in the influence of the bipolar seesaw, which diminished as the Earth warmed, and was succeeded after ~14.6 ka by the emergence of a dominant interhemispheric atmospheric teleconnection.
Resumo:
The Faroe-Shetland channel is situated in the main path of the inflow of warm North Atlantic surface water to the Nordic seas and further provides an escape route for the cold Norwegian Sea Deep Water. AMS 14C dates of planktonic foraminifera covering Marine Isotope Stage 3 from two cores in the Faroe-Shetland channel will be used to trace past variability of the Atlantic Meridional Overturning Circulation (AMOC). The reservoir age R shows considerable variability ranging between 50 to 2750 14C years. In particular high R values are observed during Heinrich event 4 (H4) with values around 1550 14C years and during the Laschamp magnetic excursion with R values as high as 2700 14C years. The period between Greenland interstadial 8 (GI8) and GI5 show highly variable R values with interstadial R values around 500 – 650 14C years, i.e. slightly higher than ‘normal’, whereas stadials show either significantly higher or lower R values. From GI5 towards the Last Glacial Maximum R values are generally around 1000 14C years or higher. Using magnetic susceptibility, IRD and δ13C and δ18O values measured on the planktic foraminifera species Neogloboquadrina pachyderma, we compare the observed R variability with reconstructed changes in the Atlantic Meridional Overturning Circulation (AMOC). Furthermore a climate model of intermediate complexity (GENIE) including 14C is used as conceptual tool for identifying oceanographic configuration explaining the observed R variability.
Resumo:
Despite the importance of gelatinous zooplankton as components of marine ecosystems, both ecologically and socio-economically, relatively little is known about population persistence or connectivity in jellyfish. In the present study, we employed a combination of nuclear microsatellite markers and sequence data from the mitochondrial cytochrome oxidase I (COI) gene to determine levels and patterns of population genetic structuring in the holoplanktonic jellyfish Pelagia noctiluca across the northeast Atlantic Ocean and Mediterranean Sea. Our results indicate a high degree of connectivity in P. noctiluca, with little evidence of geographical structuring of genetic variation. A small but significant differentiation of Atlantic Ocean and Mediterranean stocks was detected based on the microsatellite data, but no evidence of differentiation was observed with the mtDNA, probably due to the higher power of the microsatellites to detect low levels of genetic structuring. Two clearly distinct groups of genotypes were observed within the mtDNA COI, which probably diverged in the early Pleistocene, but with no evidence of geographical structuring. Palaeodistribution modelling of P. noctiluca at the Last Glacial Maximum (LGM; ca. 21 KYA) indicated large areas of suitable habitat south of the species’ current-day distribution, with little reduction in area. The congruent evidence for minimal genetic differentiation from the nuclear microsatellites and the mtDNA, coupled with the results of the palaeodistribution modelling, supports the idea of long-term population stability and connectivity, thus providing key insights into the population dynamics and demography of this important species
Resumo:
Lumpfish, or lumpsucker, Cyclopterus lumpus (Linnaeus, 1758) is widely distributed in the North Atlantic Ocean. It has a considerable economic value and substantial fisheries occur in several North Atlantic regions owing to the use of its fully ripe internal egg masses in the ovaries as an alternative to sturgeon caviar. Despite being intensively fished in several locations, biological knowledge is limited and no genetic structure information is available. In this study, the stock structure of C. lumpus was investigated across the North Atlantic using ten microsatellite loci. Out of ten loci, two exhibited higher level of differentiation but their inclusion/ exclusion from the analyses did not drastically change the observed genetic pattern. A total of three distinct genetic groups were detected: Maine-Canada-Greenland, Iceland-Norway and Baltic Sea. These results, discussed in terms of origin of differentiation, gene flow, and selection, showed that gene flow was rather limited among the detected groups, and also between Greenland and Maine-Canada.
Resumo:
Deep-sea bivalves found at hydrothermal vents, cold seeps and organic falls are sustained by chemosynthetic bacteria that ensure part or all of their carbon nutrition. These symbioses are of prime importance for the functioning of the ecosystems. Similar symbioses occur in other bivalve species living in shallow and coastal reduced habitats worldwide. In recent years, several deep-sea species have been investigated from continental margins around Europe, West Africa, eastern Americas, the Gulf of Mexico, and from hydrothermal vents on the Mid-Atlantic Ridge. In parallel, numerous, more easily accessible shallow marine species have been studied. Herein we provide a summary of the current knowledge available on chemosymbiotic bivalves in the area ranging west-to-east from the Gulf of Mexico to the Sea of Marmara, and north-to-south from the Arctic to the Gulf of Guinea. Characteristics of symbioses in 53 species from the area are summarized for each of the five bivalve families documented to harbor chemosynthetic symbionts (Mytilidae, Vesicomyidae, Solemyidae, Thyasiridae and Lucinidae). Comparisons are made between the families, with special emphasis on ecology, life cycle, and connectivity. Chemosynthetic symbioses are a major adaptation to ecosystems and habitats exposed to reducing conditions. However, relatively little is known regarding their diversity and functioning, apart from a few “model species” on which effort has focused over the last 30 yr. In the context of increasing concern about biodiversity and ecosystems, and increasing anthropogenic pressure on oceans, we advocate a better assessment of the diversity of bivalve symbioses in order to evaluate the capacities of these remarkable ecological and evolutionary units to withstand environmental change.
Resumo:
The North Atlantic intertidal community provides a rich set of organismal and environmental material for the study of ecological genetics. Clearly defined environmental gradients exist at multiple spatial scales: there are broad latitudinal trends in temperature, meso-scale changes in salinity along estuaries, and smaller scale gradients in desiccation and temperature spanning the intertidal range. The geology and geography of the American and European coasts provide natural replication of these gradients, allowing for population genetic analyses of parallel adaptation to environmental stress and heterogeneity. Statistical methods have been developed that provide genomic neutrality tests of population differentiation and aid in the process of candidate gene identification. In this paper, we review studies of marine organisms that illustrate associations between an environmental gradient and specific genetic markers. Such highly differentiated markers become candidate genes for adaptation to the environmental factors in question, but the functional significance of genetic variants must be comprehensively evaluated. We present a set of predictions about locus-specific selection across latitudinal, estuarine, and intertidal gradients that are likely to exist in the North Atlantic. We further present new data and analyses that support and contradict these simple selection models. Some taxa show pronounced clinal variation at certain loci against a background of mild clinal variation at many loci. These cases illustrate the procedures necessary for distinguishing selection driven by internal genomic vs. external environmental factors. We suggest that the North Atlantic intertidal community provides a model system for identifying genes that matter in ecology due to the clarity of the environmental stresses and an extensive experimental literature on ecological function. While these organisms are typically poor genetic and genomic models, advances in comparative genomics have provided access to molecular tools that can now be applied to taxa with well-defined ecologies. As many of the organisms we discuss have tight physiological limits driven by climatic factors, this synthesis of molecular population genetics with marine ecology could provide a sensitive means of assessing evolutionary responses to climate change.