885 resultados para Nonlinear absorption
Resumo:
This work aims to compare different nonlinear functions for describing the growth curves of Nelore females. The growth curve parameters, their (co) variance components, and environmental and genetic effects were estimated jointly through a Bayesian hierarchical model. In the first stage of the hierarchy, 4 nonlinear functions were compared: Brody, Von Bertalanffy, Gompertz, and logistic. The analyses were carried out using 3 different data sets to check goodness of fit while having animals with few records. Three different assumptions about SD of fitting errors were considered: constancy throughout the trajectory, linear increasing until 3 yr of age and constancy thereafter, and variation following the nonlinear function applied in the first stage of the hierarchy. Comparisons of the overall goodness of fit were based on Akaike information criterion, the Bayesian information criterion, and the deviance information criterion. Goodness of fit at different points of the growth curve was compared applying the Gelfand`s check function. The posterior means of adult BW ranged from 531.78 to 586.89 kg. Greater estimates of adult BW were observed when the fitting error variance was considered constant along the trajectory. The models were not suitable to describe the SD of fitting errors at the beginning of the growth curve. All functions provided less accurate predictions at the beginning of growth, and predictions were more accurate after 48 mo of age. The prediction of adult BW using nonlinear functions can be accurate when growth curve parameters and their (co) variance components are estimated jointly. The hierarchical model used in the present study can be applied to the prediction of mature BW in herds in which a portion of the animals are culled before adult age. Gompertz, Von Bertalanffy, and Brody functions were adequate to establish mean growth patterns and to predict the adult BW of Nelore females. The Brody model was more accurate in predicting the birth weight of these animals and presented the best overall goodness of fit.
Resumo:
The objective of this study was to evaluate duodenocecostomy in horses performed through a ventral midline laparotomy and report its influence oil body weight, glucose absorption, serum components, and characteristics of jejunum, cecum, and large colon histology. Four horses were submitted to the duodenocecostomy technique through a ventral midline laparotomy with animals in dorsal recumbency under inhalation anesthesia, followed by abdominal exploration. A side-to-side anastomosis was performed between the duodenojejunal flexure and the base of the cecum with two simple continuous suture lines of the serosal and muscular layers. The size of the opening created was approximately 2 cm in diameter. The mucosa layer was not Sutured. After 30 days, animals were submitted to a second laparotomy to check the patency of the duodenocaecal fistula. During both laparotomy procedures, excisional biopsies of different segments of the gastrointestinal tract were performed. Information on physical examination findings, results of hematologic and histopathologic evaluations, and oral glucose absorption test were recorded. The horses did not have significant weight loss from baseline, and absorption curve of glucose did not significantly vary from baseline. Only triglycerides had significant alterations. Histologic evaluation of jejunum, cecum, and large colon did not show alterations of intestinal structure and morphology. We concluded that the proposed technique, principally in relation to the fistula size and not suturing the mucosa layer, allowed partial or total Occlusion of the fistulae without the necessity of a second surgery and avoided the permanent bypass of ingesta and weight loss.
Resumo:
Classical dynamics is formulated as a Hamiltonian flow in phase space, while quantum mechanics is formulated as unitary dynamics in Hilbert space. These different formulations have made it difficult to directly compare quantum and classical nonlinear dynamics. Previous solutions have focused on computing quantities associated with a statistical ensemble such as variance or entropy. However a more diner comparison would compare classical predictions to the quantum predictions for continuous simultaneous measurement of position and momentum of a single system, in this paper we give a theory of such measurement and show that chaotic behavior in classical systems fan be reproduced by continuously measured quantum systems.
Resumo:
The stability of difference inclusions x(k+1) is an element of F(x(k)) is studied, where F(x) = {F(x, gimel) : is an element of Lambda} and the selections F(., gimel) : E -->E assume values in a Banach space E, partially ordered by a cone K. It is assumed that the operators F(.,gimel) are heterotone or pseudoconcave. The main results concern asymptotically stable absorbing sets, and include the case of a single equilibrium point. The results are applied to a number of practical problems.
Resumo:
Aim. The aim of this study was to evaluate the concentration of calcium ions and smear layer removal by using root canal chelators according to flame atomic absorption spectrophotometry and scanning electron microscopy. Forty-two human maxillary central incisors were irrigated with 15% ethylenediaminetetraacetic acid (EDTA), 10% citric acid, 10% sodium citrate, apple vinegar, 5% acetic acid, 5% malic acid, and sodium hypochlorite. The concentration of calcium ions was measured by using flame atomic absorption spectrometry, and smear layer removal was determined by scanning electron microscopy. Mean +/- standard deviation, one-way analysis of variance, Tukey-Kramer, Kruskal-Wallis, Dunn, and kappa tests were used for statistical analysis. The use of 15% EDTA resulted in the greatest concentration of calcium ions followed by 10% citric acid; 15% EDTA and 10% citric acid were the most efficient solutions for removal of smear layer. (J Endod 2009;35:727-730)
Resumo:
The diffusion model for percutaneous absorption is developed for the specific case of delivery to the skin being limited by the application of a finite amount of solute. Two cases are considered; in the first, there is an application of a finite donor (vehicle) volume, and in the second, there are solvent-deposited solids and a thin vehicle with a high partition coefficient. In both cases, the potential effect of an interfacial resistance at the stratum corneum surface is also considered. As in the previous paper, which was concerned with the application of a constant donor concentration, clearance limitations due to the viable eqidermis, the in vitro sampling rate, or perfusion rate in vivo are included. Numerical inversion of the Laplace domain solutions was used for simulations of solute flux and cumulative amount absorbed and to model specific examples of percutaneous absorption of solvent-deposited solids. It was concluded that numerical inversions of the Laplace domain solutions for a diffusion model of the percutaneous absorption, using standard scientific software (such as SCIENTIST, MicroMath Scientific software) on modern personal computers, is a practical alternative to computation of infinite series solutions. Limits of the Laplace domain solutions were used to define the moments of the flux-time profiles for finite donor volumes and the slope of the terminal log flux-time profile. The mean transit time could be related to the diffusion time through stratum corneum, viable epidermal, and donor diffusion layer resistances and clearance from the receptor phase. Approximate expressions for the time to reach maximum flux (peak time) and maximum flux were also derived. The model was then validated using reported amount-time and flux-time profiles for finite doses applied to the skin. It was concluded that for very small donor phase volume or for very large stratum corneum-vehicle partitioning coefficients (e.g., for solvent deposited solids), the flux and amount of solute absorbed are affected by receptor conditions to a lesser extent than is obvious for a constant donor constant donor concentrations. (C) 2001 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 90:504-520, 2001.
Resumo:
Recently there has been experimental and theoretical interest in cross-dispersion effects in rubidium vapor, which allows one beam of light to be guided by another. We present theoretical results which account for the complications created by the D line hyperfine structure of rubidium as well as the presence of the two major isotopes of rubidium. This allows the complex frequency dependence of the effects observed in our experiments to be understood and lays the foundation for future studies of nonlinear propagation.
Resumo:
The present study estimated the population pharmacokinetics of lamotrigine in patients receiving oral lamotrigine therapy with drug concentration monitoring, and determined intersubject and intrasubject variability. A total of 129 patients were analyzed from two clinical sites. Of these, 124 patients provided spare data (198 concentration-time points); nine patients (four from a previous group plus five from the current group) provided rich data (431 points). The population analysis was conducted using P-PHARM (TM) (SIMED Scientific Software, Cedex, France), a nonlinear mixed-effect modeling program. A single exponential elimination model (first-order absorption) with heteroscedastic weighting was used. Apparent clearance (CL/F) and volume of distribution (V/F) were the pharmacokinetic parameters estimated. Covariate analysis was performed to determine which factors explained any of the variability associated with lamotrigine clearance. Population estimates of CL/F and V/F for lamotrigine generated in the final model were 2.14 +/- 0.81 L/h and 78.1 +/- 5.1 L/kg. Intersubject and intrasubject variability for clearance was 38% and 38%, respectively. The covariates of concomitant valproate and phenytoin therapy accounted for 42% of the intersubject variability of clearance. Age, gender, clinic site, and other concomitant antiepileptic drugs did not influence clearance. This study of the population pharmacokinetics of lamotrigine in patients using the drug clinically provides useful data and should lead to better dosage individualization for lamotrigine.
Resumo:
Effluent water from shrimp ponds typically contains elevated concentrations of dissolved nutrients and suspended particulates compared to influent water. Attempts to improve effluent water quality using filter feeding bivalves and macroalgae to reduce nutrients have previously been hampered by the high concentration of clay particles typically found in untreated pond effluent. These particles inhibit feeding in bivalves and reduce photosynthesis in macroalgae by increasing effluent turbidity. In a small-scale laboratory study, the effectiveness of a three-stage effluent treatment system was investigated. In the first stage, reduction in particle concentration occurred through natural sedimentation. In the second stage, filtration by the Sydney rock oyster, Saccostrea commercialis (Iredale and Roughley), further reduced the concentration of suspended particulates, including inorganic particles, phytoplankton, bacteria, and their associated nutrients. In the final stage, the macroalga, Gracilaria edulis (Gmelin) Silva, absorbed dissolved nutrients. Pond effluent was collected from a commercial shrimp farm, taken to an indoor culture facility and was left to settle for 24 h. Subsamples of water were then transferred into laboratory tanks stocked with oysters and maintained for 24 h, and then transferred to tanks containing macroalgae for another 24 h. Total suspended solid (TSS), chlorophyll a, total nitrogen (N), total phosphorus (P), NH4+, NO3-, and PO43-, and bacterial numbers were compared before and after each treatment at: 0 h (initial); 24 h (after sedimentation); 48 h (after oyster filtration); 72 h (after macroalgal absorption). The combined effect of the sequential treatments resulted in significant reductions in the concentrations of all parameters measured. High rates of nutrient regeneration were observed in the control tanks, which did not contain oysters or macroalgae. Conversely, significant reductions in nutrients and suspended particulates after sedimentation and biological treatment were observed. Overall, improvements in water quality (final percentage of the initial concentration) were as follows: TSS (12%); total N (28%); total P (14%); NH4+ (76%); NO3- (30%); PO43-(35%); bacteria (30%); and chlorophyll a (0.7%). Despite the probability of considerable differences in sedimentation, filtration and nutrient uptake rates when scaled to farm size, these results demonstrate that integrated treatment has the potential to significantly improve water quality of shrimp farm effluent. (C) 2001 Elsevier Science B.V. All rights reserved.