975 resultados para Non-isothermal kinetics
Resumo:
The influence of additions of 2, 4, 6, 8, 10 and 12 wt.% Ag in the isothermal aging kinetics of the Cu-8 wt.% Al alloy was studied using microhardness measurements, differential scanning calorimetry, optical and scanning electron microscopy and X-ray diffractometry. The results indicate that the presence of silver is responsible for the shift of the equilibrium concentration to higher Al contents, allowing the formation of the gamma(1) phase (Al4Cu9) in this alloy. For Ag additions up to 6% the dominant kinetic process is Ag precipitation and for additions from 8 to 12% Ag the nucleation of the perlitic phase dominates. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
The non-occurrence of the beta' -> (alpha+ gamma(1)) decomposition reaction in the Cu-9 wt.% Al-6 wt.% Ag alloy, on ageing between 200 and 450 degrees C, is discussed considering the influence of Ag on point defects redistribution and energy difference between martensite and the ordered parent phase. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
Kinetics of short-range ordering (SRO) in Ag with 21, 23 and 28 at% Zn is investigated by residual resistometry during isochronal and isothermal heat treatment for different states of post-deformation defect annealing after cold-rolling to about 30 and 60% thickness reduction. Resistivity changes due to pure ordering can be separated from the as-measured total resistivity change which includes defect annealing. Although the initial state of SRO of the as-rolled material can be estimated to be comparably low, for as-rolled and partially annealed states by appropriate thermal treatment evolution of SRO is achieved which corresponds quite well to that of recrystallized samples. It is observed, however, that quenched-in surplus vacancies contribute considerably to the ordering process for the recrystallized state and that this contribution is still increased by the grain growth during the final stage of annealing. It therefore turns out that SRO-kinetics under equilibrium vacancy conditions can be better observed in a state of post-deformation annealing, for which deformation induced point defects are annealed-out, but a relatively high dislocation density is still present to act as a vacancy sink. Copyright (C) 1996 Acta Metallurgica Inc.
Resumo:
Short-range ordering (SRO) kinetics was investigated under temperature conditions of isochronal and isothermal annealing in completely recrystallized Ag-21, -23, -28 at.% Zn by residual resistometry. The SRO kinetics deviated considerably from a single exponential relaxation process and was therefore analysed using a log-normal spectrum of SRO relaxation times. This yields activation enthalpies for changes in the degree of SRO in good accordance with literature data. Isothermal SRO relaxation of undeformed samples was compared with that of cold-rolled and partially annealed samples.
Resumo:
Cathodic stripping voltammetry (CSV) and accumulation at the hanging mercury drop electrode are reviewed briefly. Proposals in a recent IUPAC technical report are considered. Three recent developments in CSV are discussed: the adaptation of CSV methods developed for use with the hanging mercury drop electrode for use with screen-printed carbon electrodes in disposable sensors, the use of reactive accumulation, and the chemometric use of kinetic methods of determination with pulse methods in CSV.
Resumo:
We have investigated, by in situ small-angle X-ray scattering (SAXS), the kinetics of formation of zinc oxide colloidal suspensions obtained after refluxing alcoholic solution of zinc acetate and catalysed by lithium hydroxide. The experimental results demonstrate that the suspensions are composed of colloidal spheroidal particles with a multimodal size distribution. The average radius of the main mode, approximately 2 nm, is invariant but the number of these basic particles continuously increases for increasing hydrolysis reaction time. The other two modes correspond to particles with average radii close to 6 and 10 nm, respectively. The larger particles are formed by coagulation of the smaller ones. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
The metal-insulator (or amorphous semiconductor) blocking contact is still not well understood. In the present paper, we discuss the non steady state characteristics of Metal-lnsulator-Metal Structure with non-intimate blocking contacts (i.e. Metal-Oxide-Insulator-Metal Structure). We consider a uniform distribution (in energy) of impurity states in addition to impurity states at a single energy level within the depletion region. We discuss thermal as well as isothermal characteristics and present expressions for the temperature of maximum current (T-m) and a method to calculate the density of uniformly distributed impurity states. The variation of mobility with electrical field has also been considered. Finally we plot the theoretical curves under different conditions. The present results are closing into available experimental results.
Resumo:
The kinetics of aggregation of tetraethoxysilane (TEOS)-derived silica sols, produced by acid-catalyzed and ultrasound-stimulated hydrolysis, were studied by 'in situ' measurements of small-angle X-ray scattering (SAXS) at the temperatures 40 degreesC, 60 degreesC and 70 degreesC. The results were analyzed in terms of the evolution with time (t) of the SAXS intensity probing the mass fractal characteristics of the system, the average radius of gyration (Rc,) of the clusters and the number of primary particles per cluster. The aggregation process yields mass fractal structures which exhibit a scattering exponent (alpha) practically equal to 2, in the probed length scale range (5.3 nm < 1/q < 0.22 nm), beneath and even far beyond the gel point. This suggests that a is a direct measure of the real mass fractal dimension (D) of the structure. The precursor sol (pH = 2) exhibits I nm mean sized clusters with mass fractal dimension D similar to 1.9. Increasing the pH to 4.5, the cluster mean size and the number of primary particles per cluster increase but the system keeps a more opened structure (D similar to 1.4). In the first aggregation stages, D increases up to similar to2 by incorporating primary particles to the clusters without changing their mean size. From this stage, the aggregation progresses following a thermally activated scaling law well described by R-G similar tot(1/D) in all cases. This is indicative of a diffusion-controlled cluster-cluster aggregation process. The activation energy of the process was found to be 91.7 kJ/mol. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Dielectric thermal analysis has been proved as a valuable tool for monitoring the epoxy curing process and the related rheological properties in the fabrication of polymer-matrix composite materials. This technique also has the potential to be applied in the monitoring of magnet impregnation processes as well as in quality control. In this work we present the quantitative evaluation of the viscosity changing and the curing kinetics for a commercial Stycast epoxy resin system at different temperatures through the impedance analysis. The results showed correlation between the real component of the complex impedance and the isothermal reaction extent. Comparing the dielectric analysis result with the viscosity measured by rotational rheometer we observed a similar behavior reported for dynamic mechanic analysis. The results comparison have shown that the kinetics parameters obtained from DSC and DETA analysis showed different sensitivities related to the characteristics of curing stages. We concluded that the dielectric thermal analysis should be applied in quantitative evaluation of cure kinetics.
Resumo:
We discuss non-steady state electrical characteristics of a metal-insulator-metal structure. We consider an exponential distribution (in energy) of impurity states in addition to impurity states at a single energy level within the depletion region. We discuss thermal as well as isothermal characteristics and present an expression for the temperature of maximum current (Tm) and a method to calculate the density of exponentially distributed impurity states. We plot the theoretical curves for various sets of parameters and the variation of Tm, and Im (maximum current) with applied potential for various impurity distributions. The present model can explain the available experimental results. Finally we compare the non-steady state characteristics in three cases: (i) impurity states only at a single energy level, (ii) uniform energetic distribution of impurity states, and (iii) exponential energetic distribution of impurity states.
Resumo:
The formation of an ordered (crystalline) phase during isothermal sintering of SnO2 monolithic xerogels, at 200, 250, 300, 400, 500, 600 and 700°C, has been analyzed by the combined use of EXAFS and XRD techniques. For the desiccated gel (110°C), EXAFS results show the formation of small microcrystallites with the incipient cassiterite structure. Between 110 and 250°C, the dehydratation reaction leads to an amorphization evidenced by a decrease of the long and short range crystallographic order. It is due to fissure formation in the xerogel network. For higher temperatures, a continuous coagulation of the crystallites occurs, leading to grain growth. Grain and pore growth obeys the same kinetic relation, so that the microstructure grows by simple enlargement while its morphology is static.
Resumo:
The formation of calcium silicate hydrates (C-S-H) during the hydration of tricalcium silicate (C3S) in pure water and in water solutions containing 1% CaCl2 (accelerator) and 0.01% saccharose (retarder) was studied by small-angle X-ray scattering (SAXS). SAXS measurements were performed under isothermal conditions within the temperature range 25 °C T < 52 °C. The experimental results indicate that the time variation of the mass fraction of the C-S-H product phase, α(f), can be fitted, under all conditions of paste setting, by Avrami equation, α(t) = 1 -exp(-(kt)′), k being a rate parameter and n an exponent depending on the characteristics of the transformation. The parameter n is approximately equal to 2 for hydration of C^S in pure water. Depending on temperature, n varies from 2 to 2.65 for hydration in the presence of CaC^ and saccharose. The value n = 2 is theoretically expected for lateral growth of thin C-S-H plates of constant thickness. The time dependence of SAXS intensity indicates that the transformed phase (C-S-H) consists of colloidal particles in early stages of hydration, evolving by two-dimensional growth toward a disordered lamellar structure composed of very thin plates. The activation energy ΔE for the growth of C-S-H phase was determined from the time dependence of X-ray scattering intensity. These data were obtained by in situ measurements at different temperatures of hydration. The values of ΔE are 37.7, 49.4, and 44.3 kJ/mol for hydration in pure water and in water solutions containing CaCl2 and saccharose, respectively. © 2000 American Chemical Society.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cassava leaves have been widely used as a protein source for ruminants in the tropics. However, these leaves contain high level of hydro-cyanic acid (HCN) and condensed tannins (CT). There are evidences that making hay can eliminate more than 90% of HCN and that long-term storage can reduce CT levels. A complete randomized design with four replicates was conducted to determine the effect of different storage times (0-control, 60, 90 and 120 days) on chemical composition, in vitro rumen fermentation kinetics, digestibility and energy value of cassava leaves hay. Treatments were compared by analyzing variables using the GLM procedure (SAS 9.1, SAS Institute, Inc., Cary, NC). Crude protein (CP) and ether extract (EE) of the cassava hay were not affected (P > 0.05) by storage time (17.7% and 3.0%, respectively). Neutral detergent fiber, acid detergent fiber, total carbohydrate and non-fiber carbohydrate were not affected either (P>0.05) by storage time (47.5, 32.6, 72.3 and 25.8% respectively). However, other parameters were influenced. CT was lower (P<0.05) in hay after 120 days of storage compared with control (1.75% versus 3.75%, respectively). Lignin and insoluble nitrogen in neutral detergent, analyzed without sodium sulfite, were higher (P<0.01) after 120 days of storage, compared with the control (11.22 versus 13.57 and 1.65 versus 3.81% respectively). This suggests that the CT has bound to the fiber or CP and became inactive. Consequently, the in vitro digestibility of organic matter (50.36%), total digestible nutrients (44.79%) and energy (1.61 Mcal/KgMS), obtained from gas production data at 72 h of incubation, has increased (P<0.05) with storage times (56.83%, 51.53% and 1.86 Mcal/KgMS, respectively). The chemical composition and fermentative characteristics of cassava hay suffered variations during the storage period. The best values were obtained after 90 days of storage. This is probably due to the reduction in condensed tannins.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)