914 resultados para Nitrogen fertilization and yield components
Resumo:
Prawn meat treated with Streptococcus pyogenes B-49-2 culture and Staphylococcus aureus ATCC-12598 culture were frozen in conventional plate freezer at -40°C and by spray type liquid nitrogen freezer. The frozen products were stored at -18°C. Streptococcus pyogenes B-49-2 showed low sensitivity to cold injury during freezing and frozen storage. Staphylococcus aureus ATCC-12598 survived during the entire storage period of 240 days. Total bacterial count of untreated prawn meat was found to be always lesser in liquid nitrogen frozen products than that in plate frozen products.
Resumo:
The study was conducted at the Central Experimental Station, Philippine Rice Research Institute, Maligaya, Science City of Munoz, Nueva Ecija, Philippines during the wet season to determine the suitable stocking density(s) for better growth and yield of fish under rice-fish production systems. Recovery rate of GIFT tilapia in different stocking densities ranged from 75.74 to 83.47%. Among different treatments, rice +5,000 fingerlings/ha and rice +10,000 fingerlings/ha resulted in the highest recovery rate of 83.33% and 83.47%, respectively. The lowest recovery rate of 75.75% was obtained from rice +20,000 fingerlings/ha, but similar to that was obtained (78.56%) from rice +15,000 fingerlings/ha. Significantly higher rate of gain in body weight and that of specific growth rate were recorded in the treatment from rice +5,000 fingerlings/ha, while other treatments resulted in similar absolute and specific growth rate. Fish yield increased significantly with relatively higher stocking densities, but higher densities produced maximum number of smaller fishes and also lower recovery rate.
Resumo:
Lar lake, with the international UTM specification of 39S 579680 3976567 & 39S 589930 3976184 is Situated in Lar national Park with an aerial distance of 55 Km of Tehran along Haraz road. The present research is carried out as part of a comprehensives Plan for assessment of bioresearches of Lar lake & the rivers flowing into it. This research includes examination of there benthic Samplings performed in Lar lake and each of the related rivers including Delichaee, Ab-e-sefid , Alarm & Lar (Kamardasht).Tubifex and Chironomus genus were found to have the highest frequencies of occurrence in the lake with %77.117 & %21.823 respectively followed by Chironomidae and Simulidae from the Diptera order which accounted for %72.328 and %13.812 occurrences in four rivers examined in the Study. The benthic biomass at various examined Sites and the average wet weight of the benthic biomass in station No one in the lake Was 17.397g and the figure for the examined site in Alarm was 20.242 g which were the highest level among Other examination stations the index for the abundance of species in Alarm river was greater than the rest of the examined rivers with 12.57. A sum of 354 Pieces of brown trouts was caught in the course of sampling which were closely investigated in terms of their digestive tract Content. It was identified that Daphniidae and Chironomus constituted the bulk of eaten items from the lake with %17.985 and %63.973 respectively. Meanwhile, Chironomidae and Simuladae were the most frequently eanten benthos by the fish with %81.47 and %7.93 respectively.The index for the relative length of gut was recorded at 0.49± 0.08 which is well indicative of the carnivorous diet of the fish.The index for the feeding intensity amounted to 138 83 showing that the one year old fish were of more feeding intensity.The coefficient of condition (K) was estimated at 1.02 0.142 for all the caught fish. The average wet weight of the benthos was 10.348 g per square meter which if extended to 700ha surface area of the lake, the total macrobenthic production in the lake would amount to 72730Kg of wet weight or 6510 Kg of dry weight. Since the Secondary Production of macrobenthos have always been double that of their biomass, it is reasonable to assume that the Secondary Production of macrobenthos amount to 145640 Kg by their wet weight and Since the energy transfer in the food chain of the lake from benthos to fish is 10 percent, the fish production Capacity Coming from benthic resources of the lake (Lar) would be 14.5 MT, half of which (7000-8000MT) could annually be harvested. Further more, the actual fish Production Capacity might exceed the projected level Since Daphnia, Rotifers and Ostracoda which belong to Zooplanktons, play a part in the natural diet of trout. Meanwhile, rivers Play a major role in fish nutrition and the annual fish production in Delichaee river is about 4481.8Kg while the figures for Ab-e-sefid, Alerm and Lar rivers are 2370.7 4848.7 and 2586.2 Kg respectively, that further increase fish Production in the area and every year half of these resources can be exploitable from the river & the lake.Nevertheless, due to ecological & biological importance of rivers and the probability of environmental Pollution, devastation of natural fish habitats & their nursery grounds, Sport fishing is not recommended at all.
Resumo:
Reusing steel and aluminum components would reduce the need for new production, possibly creating significant savings in carbon emissions. Currently, there is no clearly defined set of strategies or barriers to enable assessment of appropriate component reuse; neither is it possible to predict future levels of reuse. This work presents a global assessment of the potential for reusing steel and aluminum components. A combination of top-down and bottom-up analyses is used to allocate the final destinations of current global steel and aluminum production to product types. A substantial catalogue has been compiled for these products characterizing key features of steel and aluminum components including design specifications, requirements in use, and current reuse patterns. To estimate the fraction of end-of-life metal components that could be reused for each product, the catalogue formed the basis of a set of semistructured interviews with industrial experts. The results suggest that approximately 30% of steel and aluminum used in current products could be reused. Barriers against reuse are examined, prompting recommendations for redesign that would facilitate future reuse.
Resumo:
w Traditionally, nitrogen control is generally considered an important component of reducing lake eutrophication and cyanobacteria blooms. However, this viewpoint is refuted recently by researchers in China and North America. In the present paper, the traditional viewpoint of nitrogen control is pointed out to lack a scientific basis: the N/P hypothesis is just a subjective assumption; bottle bioassay experiments fail to simulate the natural process of nitrogen fixation. Our multi-year comparative research in more than 40 Yangtze lakes indicates that phosphorus is the key factor determining phytoplankton growth regardless of nitrogen concentrations and that total phytoplankton biomass is determined by total phosphorus and not by total nitrogen concentrations. These results imply that, in the field, nitrogen control will not decrease phytoplankton biomass. This finding is supported by a long-term whole-lake experiment from North America. These outcomes can be generalized in terms that a reduction in nitrogen loading may not decrease the biomass of total phytoplankton as it can stimulate blooms of nitrogen-fixing cyanobacteria. To mitigate eutrophication, it is not nitrogen but phosphorus that should be reduced, unless nitrogen concentrations are too high to induce direct toxic impacts on human beings or other organisms. Finally, details are provided on how to reduce controls on nitrogen and how to mitigate eutrophication. (C) 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.
Resumo:
High Curie temperature of 900 K has been reported in Cr-doped AlN diluted magnetic semiconductors prepared by various methods, which is exciting for spintronic applications. It is believed that N defects play important roles in achieving the high-temperature ferromagnetism in good samples. Motivated by these experimental advances, we use a full-potential density-functional-theory method and supercell approach to investigate N defects and their effects on ferromagnetism of (Al,Cr)N with N vacancies (V-N). We investigate the structural and electronic properties of V-N, single Cr atom, Cr-Cr atom pairs, Cr-V-N pairs, and so on. In each case, the most stable structure is obtained by comparing different atomic configurations optimized in terms of the total energy and the force on every atom, and then it is used to calculate the defect formation energy and study the electronic structures. Our total-energy calculations show that the nearest substitutional Cr-Cr pair with the two spins in parallel is the most favorable and the nearest Cr-V-N pair makes a stable complex. Our formation energies indicate that V-N regions can be formed spontaneously under N-poor condition because the minimal V-N formation energy equals -0.23 eV or Cr-doped regions with high enough concentrations can be formed under N-rich condition because the Cr formation energy equals 0.04 eV, and hence real Cr-doped AlN samples are formed by forming some Cr-doped regions and separated V-N regions and through subsequent atomic relaxation during annealing. Both of the single Cr atom and the N vacancy create filled electronic states in the semiconductor gap of AlN. N vacancies enhance the ferromagnetism by adding mu(B) to the Cr moment each but reduce the ferromagnetic exchange constants between the spins in the nearest Cr-Cr pairs. These calculated results are in agreement with experimental observations and facts of real Cr-doped AlN samples and their synthesis. Our first-principles results are useful to elucidate the mechanism for the ferromagnetism and to explore high-performance Cr-doped AlN diluted magnetic semiconductors.
Resumo:
Separation by implantation of oxygen and nitrogen (SIMON) silicon-on-insulator (SOI) materials were fabricated by sequential oxygen and nitrogen implantation with annealing after each implantation. Analyses of SIMS, XTEM and HRTEM were performed. The results show that superior buried insulating multi-layers were well formed and the possible mechanism is discussed. The remarkable total-dose irradiation tolerance of SIMON materials was confirmed by few shifts of drain leakage current-gate source voltage (I-V) curves of PMOS transistors fabricated on SIMON materials before and after irradiation.