985 resultados para Nitrogen compounds.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the ongoing effects of climate change, phytoplankton are likely to experience enhanced irradiance, more reduced nitrogen, and increased water acidity in the future ocean. Here, we used Thalassiosira pseudonana as a model organism to examine how phytoplankton adjust energy production and expenditure to cope with these multiple, interrelated environmental factors. Following acclimation to a matrix of irradiance, nitrogen source, and CO2 levels, the diatom's energy production and expenditures were quantified and incorporated into an energetic budget to predict how photosynthesis was affected by growth conditions. Increased light intensity and a shift from inline image to inline image led to increased energy generation, through higher rates of light capture at high light and greater investment in photosynthetic proteins when grown on inline image. Secondary energetic expenditures were adjusted modestly at different culture conditions, except that inline image utilization was systematically reduced by increasing pCO2. The subsequent changes in element stoichiometry, biochemical composition, and release of dissolved organic compounds may have important implications for marine biogeochemical cycles. The predicted effects of changing environmental conditions on photosynthesis, made using an energetic budget, were in good agreement with observations at low light, when energy is clearly limiting, but the energetic budget over-predicts the response to inline image at high light, which might be due to relief of energetic limitations and/or increased percentage of inactive photosystem II at high light. Taken together, our study demonstrates that energetic budgets offered significant insight into the response of phytoplankton energy metabolism to the changing environment and did a reasonable job predicting them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A research programme is being carried out at the Institute Nacional de Tecnica Aeroespacial of Spain, on several aspects of the formation of nitrogen oxides in continuous flow combustion systems, considering hydrogen and hydrocarbons as fuels. The research programme is fundamentally oriented on the basic aspects of the problem, although it also includes the study of the influence on the formation process of several operational and design variables of the combusters, such as type of fuels, fuel/air ratio, degree of mixing in premixed type flames, existence of droplets as compared with homogeneous combustion.This problem of nitrogen oxides formation is receiving lately great attention, specially in connection with automobile reciprocating engines and aircraft gas turbines. This is due to the fact of the increasing frequency and intensity of photochemical hazes or smog, typical of urban areas submitted to strong solar radiation, which are originated by the action on organic compounds of the oxidants resulting from the photochemical decomposition of nitrogen dioxide N02. In the combustion process almost all nitrogen oxides are in form of NO. This nitric oxide reacts with the oxygen of the air and forms N02, this reaction only taking place in or near the exhaust of tne motors, since the N0-02 reaction becomes frozen for the concentration existing in the atmosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The malarial parasite Plasmodium falciparum depends on the purine salvage enzyme hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) to convert purine bases from the host to nucleotides needed for DNA and RNA synthesis. An approach to developing antimalarial drugs is to use HGXPRT to convert introduced purine base analogs to nucleotides that are toxic to the parasite. This strategy requires that these compounds be good substrates for the parasite enzyme but poor substrates for the human counterpart, HGPRT. Bases with a chlorine atom in the 6-position or a nitrogen in the 8-position exhibited strong discrimination between P. falciparum HGXPRT and human HGPRT. The k(cat)/K-m values for the Plasmodium enzyme using 6-chloroguanine and 8-azaguanine as substrates were 50-80-fold and 336-fold higher than for the human enzyme, respectively. These and other bases were effective in inhibiting the growth of the parasite in vitro, giving IC50 values as low as 1 mu M.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

N-Alkylation of heterocyclic compounds bearing an acidic hydrogen atom attached to nitrogen with alkyl halides is accomplished in ionic liquids ([bmim]BF4 = 1-butyl-3-methylimidazolium tetrafluoroborate, [bmim]PF6 = 1-butyl-3-methylimida-zolium hexafluorophosphate, [buPy]BF4 = butylpyridinium tetra­fluoroborate) in the presence of potassium hydroxide as a base. In this manner, phthalimide, indole, benzimidazole, succinimide can be successfully alkylated. The procedure is convenient, efficient, and generally affords the N-alkylated product exclusively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reviews nitrogen (N) cycle of effluent-irrigated energy crop plantations, starting from wastewater treatment to thermo-chemical conversion processes. In wastewater, N compounds contribute to eutrophication and toxicity in water cycle. Removal of N via vegetative filters and specifically in short-rotation energy plantations, is a relatively new approach to managing nitrogenous effluents. Though combustion of energy crops is in principle carbon neutral, in practice, N content may contribute to NOx emissions with significant global warming potential. Intermediate pyrolysis produces advanced fuels while reducing such emissions. By operating at intermediate temperature (500°C), it retains most N in char as pyrrolic-N, pyridinic-N, quaternary-N and amines. In addition, biochar provides long-term sequestration of carbon in soils.