958 resultados para Nitrogen and phosphorous loading


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 220 abundantly equipped burials from the Late Iron Age cemetery of Münsingen (420 – 240 BC) marked a milestone for Iron Age research. The evident horizontal spread throughout the time of occupancy laid the foundation for the chronology system of the Late Iron Age. Today the skulls of 77 individuals and some postcranial bones are still preserved. The aim was to obtain information about nutrition, social stratification and migration of the individuals from Münsingen. Stable isotope ratios of carbon, nitrogen and sulphur were analysed. The results of 63 individuals show that all consumed C3 plants as staple food with significant differences between males and females in δ13C and δ15N values. The results indicate a gender restriction in access to animal protein. Stable isotope values of one male buried with weapons and meat as grave goods suggest a diet with more animal proteins than the other individuals. It is possible that he was privileged due to high status. Furthermore, the δ34S values indicate minor mobility. Assuming that the subadults represent the local signal of δ34S it is very likely that adults with enriched δ34S could have migrated to Münsingen at some point during their lives. This study presents stable isotope values of one of the most important Late Iron Age burial sites in Central Europe. The presented data provide new insight into diet, migration and social stratification of the population from Münsingen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study was to analyse whether offspring of mature Quercus ilex trees grown under life-long elevated pCO2 show alterations in the physiological response to elevated pCO2 in comparison with those originating from mature trees grown at current ambient pCO2. To investigate changes in C- (for changes in photosynthesis, biomass and lignin see Polle, McKee & Blaschke Plant, Cell and Environment 24, 1075–1083, 2001), N-, and S-metabolism soluble sugar, soluble non-proteinogenic nitrogen compounds (TSNN), nitrate reductase (NR), thiols, adenosine 5′-phosphosulphate (APS) reductase, and anions were analysed. For this purpose Q. ilex seedlings were grown from acorns of mother tree stands at a natural spring site (elevated pCO2) and a control site (ambient pCO2) of the Laiatico spring, Central Italy. Short-term elevated pCO2 exposure of the offspring of control oaks lead to higher sugar contents in stem tissues, to a reduced TSNN content in leaves, and basipetal stem tissues, to diminished thiol contents in all tissues analysed, and to reduced APS reductase activity in both, leaves and roots. Most of the components of C-, N- and S-metabolism including APS reductase activity which were reduced due to short-term elevated pCO2 exposure were recovered by life-long growth under elevated pCO2 in the offspring of spring oaks. Still TSNN contents in phloem exudates increased, nitrate contents in lateral roots and glutathione in leaves and phloem exudates remained reduced in these plants. The present results demonstrated that metabolic adaptations of Q. ilex mother trees to elevated pCO2 can be passed to the next generation. Short- and long-term effects on source-to-sink relation and physiological and genetic acclimation to elevated pCO2 are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The functioning and services of Central European forests are threatened by global change and a loss of biodiversity. Nutrient cycling as a key forest function is affected by biotic drivers (e.g., dominant tree species, understory plants, soil organisms) that interact with abiotic conditions (e.g., climate, soil properties). In contrast to grassland ecosystems, evidence for the relationship of nutrient cycles and biodiversity in forests is scarce because the structural complexity of forests limits experimental control of driving factors. Alternatively, observational studies along gradients in abiotic conditions and biotic properties may elucidate the role of biodiversity for forest nutrient cycles. This thesis aims to improve the understanding of the functional importance of biodiversity for nutrient cycles in forests by analyzing water-bound fluxes of nitrogen (N) and phosphorus (P) along gradients in biodiversity in three regions of Germany. The tested hypotheses included: (1) temperate forest canopies retain atmospheric N and retention increases with increasing plant diversity, (2) N release from organic layers increases with resource availability and population size of decomposers but N leaching decreases along a gradient in plant diversity, (3) P leaching from forest canopies increases with improved P supply from recalcitrant P fractions by a more diverse ectomycorrhizal fungal community. In the canopies of 27 forest stands from three regions, 16 % to 51 % of atmospheric N inputs were retained. Regional differences in N retention likely resulted from different in N availability in the soil. Canopy N retention was greater in coniferous than in beech forests, but this was not the case on loessderived soils. Nitrogen retention increased with increasing tree and shrub diversity which suggested complementary aboveground N uptake. The strength of the diversity effect on canopy N uptake differed among regions and between coniferous and deciduous forests. The N processing in the canopy directly coupled back to N leaching from organic layers in beech forests because throughfall-derived N flushed almost completely through the mull-type organic layers at the 12 studied beech sites. The N release from organic layers increased with stand basal area but was rather low (< 10 % of annual aboveground litterfall) because of a potentially high microbial N immobilization and intensive incorporation of litter into the mineral soil by bioturbation. Soil fauna biomass stimulated N mineralization through trophic interactions with primary producers and soil microorganisms. Both gross and net leaching from organic layers decreased with increasing plant diversity. Especially the diversity but not the cover of herbs increased N uptake. In contrast to N, P was leached from the canopy. Throughfall-derived P was also flushed quickly through the mull-type organic layers and leached P was predominantly immobilized in non directly plant-available P fractions in the mineral soil. Concentrations of plant-available phosphate in mineral soil solution were low and P leaching from the canopy increased with increasing concentrations of the moderately labile P fraction in soil and increasing ectomycorrhiza diversity while leaf C:P ratios decreased. This suggested that tree P supply benefited from complementary mining of diverse mycorrhizal communities for recalcitrant P. Canopy P leaching increased in years with pronounced spring drought which could lead to a deterioration of P supply by an increasing frequency of drought events. This thesis showed that N and P cycling in Central European forests is controlled by a complex interplay of abiotic site conditions with biological processes mediated by various groups of organisms, and that diverse plant communities contribute to tightening the N cycle in Central European forests and that diverse mycorrhizal communities improve the limited P availability. Maintaining forest biodiversity seems essential to ensure forest services in the light of environmental change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A long-term experiment was established in 2009 to study continuous corn responses to potassium (K), nitrogen (N), and hybrid rootworm resistance. Previous research suggested a need for this study. A long-term trial conducted until 2001 at the ISU Northern Research Farm showed that the maximum corn yield level and the N rate that maximized yield was higher when K was optimal or greater. In contrast, the relative yield response to N and the N rate that maximized yield were similar for soil-test phosphorus (P) levels ranging from very low to very high. Other studies have shown that rootworm resistance often increases yield compared with untreated susceptible hybrids. Also, that rootworm resistance does not consistently affect the K rate that maximizes yield, but increases K removal because of the higher yield levels. Therefore, this new study evaluates possible interactions between rootworm resistance and N and K fertilization in corn.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concentrations of organic and mineral nitrogen and phosphorus in waters from different types of bays were determined during summer of 1987. Content of organic nitrogen in surface waters reached 80-97% of total; content of mineral phosphorus was 60-100%. Concentrations of N_org and P_org in deep waters decreased to 70 and 40%, respectively. Distribution of organic matter in the bays was controlled by river run-off.