983 resultados para Nitrogen adsorption desorption isotherms
Resumo:
This work reviews recent studies of underpotential deposition (UPD) of several metals on Pt and Au substrates performed in the Grupo de Materiais Eletroquímicos e Métodos Eletroanalíticos (IQSC -- USP, São Carlos). The UPD Cu, Cd and Pb on Pt were analysed in terms of their influence in the oxygen evolution reaction. Partial blockage of surface active sites, promoted by Pb ad-atoms, resulted in a change from water to hydrogen peroxide as the final product. The Ag UPD on Pt and Au substrates was also discussed in this work. A detailed model of charge calculation for Ag monolayer was developed and confirmed by the rotating ring-disk data. The partial charge transfer in UPD studies was analysed in the Cd/Pt and Cd/Au systems and a value of 0.5 was found for the adsorption electrovalence of Cd ad-ions. The Sn/Pt UPD systems were studied from the point of view of the valences of metallic ions in solution. The deposition from Sn(IV) generates a full monolayer with a maximum occupation of approximately 40% of the surface active sites (340 µC cm-2) plus 105 µC cm-2 of Hads (half monolayer). Changing the metallic ion for Sn(II), it was possible to deposit a full monolayer (210 µC cm-2) without any detectable Hads. Finally, the effect of anions was discussed in the Zn/Pt and Zn/Au systems. Here, the hydrogen evolution reaction (her) and the hydrogen adsorption/desorption were used in order to investigate the maximum coverage of the surface with Zn ad-atoms. The full monolayer, characterised by the complete absence of Hads, was achieved only in 0.5 M HF solutions.
Resumo:
Platinum is widely used as electrode in electrocatalytic processes, however the use of polycrystalline electrodes introduces a series of variables in the electrochemical system due to the aleatory contribution of all the crystallographic orientations with different surface packing of atoms. Single crystal platinum electrodes of low Miller index present surface structure of high regularity and serve as model to establish a correlation among the macroscopic and microscopic properties of the electrochemical interface. Therefore, the main aim of this work is the study of the voltammetric profiles of the reversible adsorption-desorption of hydrogen on Pt(100), Pt(110) and Pt(111), in order to correlate the electrochemical properties of each different orientation with the surface atomic structure.
Resumo:
Direct decomposition of NO on copper supported on zeolite catalysts such as MCM-22 and Beta was compared with that on the thoroughly studied Cu-ZSM-5. The catalysts were prepared by ion-exchange in basic media. They were characterized by atomic absorption, surface area, nitrogen adsorption at 77K, X-ray diffraction and temperature programmed reduction. The products of the reaction were analyzed by Fourier transform infrared spectroscopy using a gas cell. Catalytic activity tests indicated that zeolite catalysts, like Beta and MCM-22, lead to NO conversion values comparable to ZSM-5.
Resumo:
The development of cobalt catalysts to produce hydrogen from ethanol is the goal of this investigation. Co/Al2O3 catalysts were prepared by impregnation and characterized by atomic absorption, nitrogen adsorption, X-ray diffraction, Raman spectroscopy, temperature programmed reduction and carbon analysis. The catalysts contained Co3O4 oxide and Co3+ and Co2+ species interacting with alumina. The cobalt load affects the crystal size and the crystalline structure and higher Co loads influence the reaction mechanism, changing the selectivity of the catalysts, decreasing the amount of CO produced and avoiding the formation of products catalyzed by the support. The ethanol conversion was 50-70% with 10-<1% of CO in the hydrogen.
Resumo:
Cu/Ni/gamma-Al2O3 catalysts were prepared by an impregnation method with 2.5 or 5% wt of copper and 5 or 15% wt of nickel and applied in ethanol steam reforming. The catalysts were characterized by atomic absorption spectrophotometry, X-ray diffraction, temperature programmed reduction with hydrogen and nitrogen adsorption. The samples showed low crystallinity, with the presence of CuO and NiO, both as crystallites and in dispersed phase, as well as of NiO-Al2O3. The catalytic tests carried out at 400 ºC, with a 3:1 water/ethanol molar ratio, indicated the 5Cu/5Ni/Al2O3 catalyst as the most active for hydrogen production, with a hydrogen yield of 77% and ethanol conversion of 98%.
Resumo:
The present work investigated the effect of coprecipitation-oxidant synthesis on the specific surface area of perovskite-type oxides LaBO3 (B= Mn, Ni, Fe) for total oxidation of ethanol. The perovskite-type oxides were characterized by X-ray diffraction, nitrogen adsorption (BET method), thermogravimetric analysis (TGA-DTA), TPR and X-ray photoelectron spectroscopy (XPS). Through method involving the coprecipitation-oxidant was possible to obtain catalysts with different BET specific surface areas, of 33-51 m²/g. The results of the catalytic test confirmed that all oxides investigated in this work have specific catalytic activity for total oxidation of ethanol, though the temperatures for total conversion change for each transition metal.
Resumo:
This work consists in a study about the chemical activation of charred rice hulls using NaOH as the activation agent. The influence of the naturally-occurring silica was particularly evidenced. X-ray diffraction patterns showed the formation of sodium carbonate and silicates in the activated samples, whereas thermogravimetric curves revealed a strong reduction in the ash content of these samples after washing with water. Nitrogen adsorption data indicated a microporosity development only in the washed samples, with BET surface area values of 450 and 1380 m²/g achieved for the samples activated at 800 °C starting from the precursor with or without silica, respectively.
Resumo:
Coffee fruit processing is one of the most polluting activities in agriculture due to the large amount of waste generated in the process. In this work, coffee parchment was employed as precursor for the production of carbons activated with ZnCl2 (CAP). The material was characterized using N2 adsorption/desorption at 77 K, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The material showed a surface area of 521.6 m²g-1 and microporous structure. CAP was applied as adsorbent for the removal of methylene blue dye in aqueous medium. The adsorption capacity was found to be about 188.7 mg g-1.
Resumo:
This work proposes the synthesis of zeolite A by IZA standard proceedures starting from a natural clay. The clay was used in its natural form and after calcination at 900ºC. The resulting materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and porosity analysis by nitrogen adsorption. Results showed low surface area for Na-A zeolite in sodium form, but a higher one in CaA based on the nitrogen accessibility. The presence of cubic crystals for the A phase was observed in the SEM micrographies. The new procedure starting from natural clay favors the formation of sodalite while that using the calcinated clay gives A.
Resumo:
A new kind of material, denominated MCM-71, was synthesized and characterized by several complementary techniques: X Ray Diffractometry, textural analysis by nitrogen adsorption, Scanning electronic microscopy and infrared spectroscopy. MCM-71 zeolite was successfully synthesized by hydrothermal synthesis in the presence of triethanolamine. Mordenite phase as impurity was not detected, otherwise quartz was observed. The MCM-71 sample obtained presented a BET surface area of 20 m²/g in the as synthesized form and of 85 m²/g in protonic form. By SEM was observed crystals with rectangular shape with average size of 2 x 0,2 x 0,05 µm and this crystals were agglomerated in spherical particles with average diameter between 14 and 24 µm.
Resumo:
Anion adsorption/desorption dynamics was studied as individual processes on surface of particles of a gibbsitic clay. The data suggest a remarkable gibbsite role as nitrate leaching retardant in soil. The opposite behavior of gibbsite towards adsorption/desorption of silicate and phosphate suggests the need of an adequate compromise solution regarding interval and rate applications of anions in cultivated gibbsitic soils. The high P adsorption verified in pH values lower than that reported for the point of zero charge of synthetic Al-hydroxides implies that this process takes place in pedogenic gibbsites through inner sphere complexation.
Resumo:
The present work aimed to characterize an aluminum industry by-product in natura (L.A. nat) and after phosphate and thermal pretreatments; evaluate the adsorption/desorption capacity of Cd and Pb by this L.A. nat form and after the aforementioned pretreatments, comparing them with an in natura iron mining by-product (L.F. nat). The L.A. nat presented a high pH as well as a high Na concentration and also an oxide-rich mineralogy. Pretreatment of the by-product had no significant effect upon Cd and Pd adsorption/desorption. The L.A. nat performed better than the L.F. nat as an Cd and Pb adsorbent.
Resumo:
In this work, the perovskite-type oxides LaNiO3, LaMnO3, La0,7Sr0,3NiO3 and La0,7Sr0,3MnO3 were prepared by co-precipitation and tested in the NO reduction with CO at 400 and 500 ºC for 10 h. The catalysts were characterized by X-ray diffraction, temperature programmed reduction with hydrogen, nitrogen adsorption and chemical analysis. The nonstoichiometric oxygen was quantified by temperature programmed reduction, and the catalytic tests showed that the La0,7Sr0,3MnO3 catalyst presented the higher performance for the reduction reaction of NO with CO. The partial substitution of lanthanum by strontium increased the NO conversion and the N2 yield.
Resumo:
In this work synthetic niobia was used to promote the oxidation of methylene blue dye in aqueous medium. The niobia was characterized by N2 adsorption/desorption, XRD and TG measurements. The presence of reactive species on the niobia surface strongly increased the oxidation rate of the methylene blue dye. The reaction mechanism was studied by ESI-MS suggesting that the oxidation of the organic dye involve oxidizing species generated mainly after previous treatment with H2O2. It can be observed that the catalyst is a good material in the activation of gas (atmospheric oxygen) or liquid (hydrogen peroxide) oxidant agent with a total discoloration of the dye solution after only 1 h of reaction.
Resumo:
Fixed-bed column studies were undertaken to evaluate the performance of a commercial Brazilian activated carbon in removing Pb(II) from aqueous environment. Breakthrough points were found out for the metal adsorption by varying different operating parameters like feed concentrations (10 and 20 mg L-1) and bed heights (0.5, 1.5 and 2.8 cm). A good agreement was observed between the experimental data and the values predicted by the bed depth service time (BDST) model. Regeneration of the exhausted columns was possible with HCl, and the adsorption capacity was maintained after three adsorption-desorption cycles.