932 resultados para Newborn animals
Resumo:
In search of a suitable vector species for xenodiagnosis of humans and animals with chronic Chagas' disease we first investigated the reactions of different vector species to acute infection with Trypanosoma cruzi. Vector species utilized in this study were: Triatoma infestans, Rhodnius prolixus and Triatoma dimidiata, all well adapted to human habitats; Triatoma rubrovaria and Rhodnius neglectus both considered totally wild species; Panstrongylus megistus, Triatoma sordida, Triatoma pseudomaculata and Triatoma brasiliensis, all essentially sylvatic but some with domiciliary tendencies and others restricted to peridomestic biotopes with incipient colonization of human houses after successful eradication of T. infestans. Results summarized in Table IV suggest the following order of infectivity among the 9 studied vector species: P. megistus with 97.8% of infected bugs, T. rubrovaria with 95% of positive bugs a close second followed by T. Pseudomaculata with 94.3% and R. neglectus with 93.8% of infected bugs, almost identical thirds. R. prolixus, T. infestans and T. dimidiata exhibited low infection rates of 53.1%, 51.6% and 38.2% respectively, coupled with sharp decreases occuring with aging of infection (Fig. 1). The situation was intermediate in T. brasiliensis and T. sordida infection rates being 76.9% and 80% respectively. Results also point to the existence of a close correlation between prevalence and intensity of infection in that, species with high infection rates ranging from 93.8% to 97.8% exhibited relatively large proportions of insects (27.3% - 33.5%) harbouring very dense populations of T. cruzi. In species with low infection rates ranging from 38.2% to 53.1% the proportion of bugs demonstrating comparable parasite densities was at most 6%. No differences attributable to blood-meal size or to greater susceptibility of indigenous vector species to parasites of their own geographical area, as suggested in earlier...
Resumo:
During an outbreak of cutaneous leishmaniasis in a locality (Las Rosas, Cojedes State, venezuela) previously non-endemic, 12.9% of humans, 7% of dogs and 21.4% of donkeys (Equus asinus) had lesions with paraites. The agent in the three hosts was identified as Leishmania braziliensis, subspecies braziliensis at least in man and donkey. The probable vector was Lutzomyia panamensis. No infection was found in a small sample of wild mammals examined. The outbreak was apparently linked with the importation of donkeys with ulcers, from endemic areas. The Authors call attention to the fact that not only in the foci of "uta", but also in areas of the other forms of American cutaneous leishmaniasis, dogs are frequently found infected. They emphasize the necessity of searching for the infection in donkeys and of performing hemocultures and xenodiagnosis with sandflies in human, canine and equine cases, to verify their possible role as sources of infection, and not merely as dead ends in the epidemiological chain of the disease.
Resumo:
The pathogenesis of Duchenne muscular dystrophy (DMD), characterised by lack of the cytoskeletal protein dystrophin, is not completely understood. An early event in the degenerative process of DMD muscle could be a rise in cytosolic calcium concentration. In order to investigate whether this leads to alterations of contractile behaviour, we studied the excitability and contractile properties of cultured myotubes from control (C57BL/10) and mdx mice, an animal model for DMD. The myotubes were stimulated electrically and their motion was recorded photometrically. No significant differences were found between control and mdx myotubes with respect to the following parameters: chronaxy and rheobase (0.33 +/- 0.03 ms and 23 +/- 4 V vs. 0.39 +/- 0.07 ms and 22 +/- 2 V for C57 and mdx myotubes, respectively), tetanisation frequency (a similar distribution pattern was found between 5 and 30 Hz), fatigue during tetanus (found in 35% of both types of myotubes) and post-tetanic contracture. In contrast, contraction and relaxation times were longer (P < 0.005) in mdx (36 +/- 2 and 142 +/- 13 ms, respectively) than in control myotubes (26 +/- 1 and 85 +/- 9 ms, respectively). Together with our earlier findings, these results suggest a decreased capacity for calcium removal in mdx cells leading, in particular, to alterations of muscle relaxation.
Resumo:
Evidence concerning the presence or absence of common neuronglia lineages in the postnatal mammalian central nervous system is still a matter of speculation. We address this problem using optic nerve explants, which show an extremely long survival in culture. Morphological, immunocytochemical and immunochemical methods were applied. The results obtained from in vitro tissue were compared with optic nerves (ONs) and whole-brain samples from animals of different ages. Newborn rat ONs represented the starting material of our tissue culture; they are composed of unmyelinated axons, astrocytes and progenitor cells but devoid of neuronal cell bodies. At this age, Western blots of ONs were positively stained by neurofilament and synapsin I specific antibodies. These bands increased in intensity during postnatal in situ development. In explant cultures, the glia cells reach a stage of functional differentiation and they maintain, together with undifferentiated cells, a complex histotypic organization. After 6 days in vitro, neurofilaments and synapsin I could not be detected on immunoblots, indicating that 1) axonal degeneration was completed, and 2) neuronal somata were absent at the time. Surprisingly, after about 4-5 weeks in culture, a new cell type appeared, which showed characteristics typical of neurons. After 406 days in vitro, neurofilaments and synapsin I were unequivocally detectable on Western blots. Furthermore, both immunocytochemical staining and light and electron microscopic examinations corroborated the presence of this earlier-observed cell type. These in vitro results clearly show the high developmental plasticity of ON progenitor cells, even late in development. The existence of a common neuron-glia precursor, which never gives rise to neurons in situ, is suggested.
Resumo:
OBJECTIVES: To investigate the development of the ureterovesical junction in rats. METHODS: A total of 110 albino rats (50 prenatal and 60 newborn) with a gestation of 21 days were studied at the age of 17 days after conception until 5 days after birth. The lower urinary tract was microdissected. Microphotography (110 animals), histologic examination (44 animals), and scanning electron microscopy (66 animals) of the ureterovesical junction were performed. Urea and creatinine from the amniotic fluid of 20 fetuses and from the urine of 10 neonates were measured. RESULTS: At day 17 after conception, separate penetration of the mesonephric duct and ureter into the wall of the urogenital sinus was observed. Continuity between the lumen of the ureter and the urogenital sinus was established on day 19 after conception. The straight passage of the intramural ureter into the urogenital sinus at day 17 after conception changed to the definitive L-shape with a vertical entry into the bladder on day 5 after birth. In the distal ureter, the change of the mesenchymal tissue into immature smooth muscle was first observed at birth, and the muscle became mature on the fifth postnatal day. At birth, Waldeyer's sheath was recognized. The creatinine and urea levels were stable prenatally (average 22.4 micromol/L and 6.88 mmol/L, respectively) and rose significantly postnatally (average 133 micromol/L and 32.65 mmol/L, respectively). CONCLUSIONS: The attachment of the ureter to the urogenital sinus and later to the bladder, the modification of its passage, and its mobility within Waldeyer's sheath may be essential in preventing vesicoureteral reflux. The production of urine and its flow does not seem to be the trigger of ureteral smooth muscle formation.
Resumo:
Colour polymorphism in vertebrates is usually under genetic control and may be associated with variation in physiological traits. The melanocortin 1 receptor (Mc1r) has been involved repeatedly in melanin-based pigmentation but it was thought to have few other physiological effects. However, recent pharmacological studies suggest that MC1R could regulate the aspects of immunity. We investigated whether variation at Mc1r underpins plumage colouration in the Eleonora's falcon. We also examined whether nestlings of the different morphs differed in their inflammatory response induced by phytohemagglutinin (PHA). Variation in colouration was due to a deletion of four amino acids at the Mc1r gene. Cellular immune response was morph specific. In males, but not in females, dark nestling mounted a lower PHA response than pale ones. Although correlative, our results raise the neglected possibility that MC1R has pleiotropic effects, suggesting a potential role of immune capacity and pathogen pressure on the maintenance of colour polymorphism in this species.
Resumo:
The membrane-associated protein SCG10 is expressed specifically by neuronal cells. Recent experiments have suggested that it promotes neurite outgrowth by increasing microtubule dynamics in growth cones. SCG10 is related to the ubiquitous but neuron-enriched cytosolic protein stathmin. To better understand the role played by SCG10 and stathmin in vivo, we have analyzed the expression and localization of these proteins in both the olfactory epithelium and the olfactory bulb in developing and adult rats, as well as in adult bulbectomized rats. The olfactory epithelium is exceptional in that olfactory receptor neurons constantly regenerate and reinnervate the olfactory bulb throughout animal life-span. SCG10 and stathmin expression in the olfactory receptor neurons was found to be regulated during embryonic and postnatal development and to correlate with neuronal maturation. Whereas SCG10 expression was restricted to immature olfactory receptor neurons (GAP-43-positive, olfactory marker protein-negative), stathmin was also expressed by the basal cells. In the olfactory bulb of postnatal and adult rats, a moderate to strong SCG10 immunoreactivity was present in the olfactory nerve layer, whereas no labeling was detected in the glomerular layer. Olfactory glomeruli also showed no apparent immunoreactivity for several cytoskeletal proteins such as tubulin and microtubule-associated proteins. In unilaterally bulbectomized rats, SCG10 and stathmin were seen to be up-regulated in the regenerating olfactory epithelium at postsurgery stages corresponding to olfactory axon regeneration. Our data strongly suggest that, in vivo, both SCG10 and stathmin may play a role in axonal outgrowth during ontogenesis as well as during axonal regeneration.
T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites.
Resumo:
T-type Ca2+ channels (T channels) underlie rhythmic burst discharges during neuronal oscillations that are typical during sleep. However, the Ca2+-dependent effectors that are selectively regulated by T currents remain unknown. We found that, in dendrites of nucleus reticularis thalami (nRt), intracellular Ca2+ concentration increases were dominated by Ca2+ influx through T channels and shaped rhythmic bursting via competition between Ca2+-dependent small-conductance (SK)-type K+ channels and Ca2+ uptake pumps. Oscillatory bursting was initiated via selective activation of dendritically located SK2 channels, whereas Ca2+ sequestration by sarco/endoplasmic reticulum Ca2+-ATPases (SERCAs) and cumulative T channel inactivation dampened oscillations. Sk2-/- (also known as Kcnn2) mice lacked cellular oscillations, showed a greater than threefold reduction in low-frequency rhythms in the electroencephalogram of non-rapid-eye-movement sleep and had disrupted sleep. Thus, the interplay of T channels, SK2 channels and SERCAs in nRt dendrites comprises a specialized Ca2+ signaling triad to regulate oscillatory dynamics related to sleep.
Resumo:
After outbreaks of cutaneous leishmaniasis in Solano State, Venezuela, 5% of the population had parasitized ulcers while after similar outbreaks in Mesquita, Rio de Janeiro State, Brazil, 9% had the disease. In these foci children, including some under six years of age, wre affected. There was no significant difference in the occurence of the disease according to sex or type of employment. In Solano, 3% of dogs and 28% of donkeys had parasitized lesions, while in Mesquita these indices were 19.8% and 30.8% respectively. The parasite from man, dogs and equines was identified as Leishmania (Viannia) braziliensis, by zymodeme and serodeme characterization. In these foci there is evidence suggesting that leishmaniasis is a zoonosis, possibly with equine and dogs as reservoirs, although both a wild enzootic cycle and the role of man as a source of infection can not be ruled out. Transmission is assumed to occur peridomestically by sandfly vectors such as Lutzomyia panamensis in Venezuela and Lutzomyia intermedia in Brazil. Information about the origin of these foci suggests that infected equines may be an important factor in the dissemination of the parasite in a peridomestic situation where these sandflies are abundant.
Resumo:
The existence of mammals and reptilia with a natural resistance to snake venoms is known since a long time. This fact has been subjected to the study by several research workers. Our experiments showed us that in the marsupial Didelphis marsupialis, a mammal highly resistant to the venom of Bothrops jararaca, and other Bothrops venoms, has a genetically origin protein, a alpha-1, acid glycoprotein, now highly purified, with protective action in mice against the jararaca snake venom.