950 resultados para New instruments for musical expression
Resumo:
ed. by M. Keizer
Resumo:
by Edward J. Stark
Resumo:
Channelrhodopsins are phototaxis receptors in the plasma membranes of motile unicellular algae. They function as light-gated cation channels and this channel activity has been exploited to trigger action potentials in neurons with light to control neural circuits (“optogenetics"). Four channelrhodopsins were identified in two algal species, Chlamydomonas reinhardtii and Volvox carteri, with known genome sequences; each species contains 2 channelrhodopsins, one absorbing at longer wavelengths and one at shorter wavelengths, named CrChR1 and CrChR2, respectively. Our goals are to expand knowledge of channelrhodopsin mechanisms and also to identify new channelrhodopsins from various algal species with improved properties for optogenetic use. For these aims we are targeting algae from extreme environments to establish the natural diversity of their properties. We cloned a new channelrhodopsin from the psychrophilic (cold-loving) alga, Chlamydomonas augustae, with degenerate primers based on the 4 known homologs. The new protein is 48% and 52% identical to CrChR1 and CrChR2, respectively. We expressed the channelrhodopsin in HEK293 cells and measured light-induced currents to assess their kinetics and action spectrum. Based on the primary structure, kinetics of light-induced photocurrents in HEK293 cells, and action spectrum maximum of 520 nm near that of the two previously found CrChR1, we named the new channelrhodopsin CaChR1. The properties of robust channel activity at physiological pH, fast on-and-off kinetics, and greatly red-shifted action spectrum maximum from that of CrChR2, make CaChR1 advantageous as an optogenetic tool. To know this new channelrhodopsin better, we expressed His-tagged CaChR1 in Pichia pastoris and the yield is about 6 mg/L. The purified His-tagged CaChR1 exhibited an absorption spectrum identical to the action spectrum of CaChR1-generated photocurrents. The future work will be measurement of the photocycles of CaChR1 by flash photolysis, crystallization of CaChR1 for the structure and mutagenesis of CaChR1 to find the critical amino acids accounting for red-shifted spectra, slow inactivation and rapid on-and-off kinetics. Seven new channelrhodopsins including CaChR1 from different algal species have been cloned in our lab at this time, bringing the total known to 13. The work of cloning of these new channelrhodopsins along with the expression of CaChR1 was published in Photochemistry and Photobiology in January 2012
Resumo:
El presente artículo analiza la significación de la relativamente frecuente ocurrencia de la terminología musical en los fragmentos de Arquíloco, tal como auloí y ejecutantes de auloí (fr.58.12,269), liras (fr.54.11, 93a lira + aulos), la trompeta (fr. 214) y el ejecutante de trompa (fr. 269), y la referencia al peán (fr.121) en sus contextos
Resumo:
El presente artículo analiza la significación de la relativamente frecuente ocurrencia de la terminología musical en los fragmentos de Arquíloco, tal como auloí y ejecutantes de auloí (fr.58.12,269), liras (fr.54.11, 93a lira + aulos), la trompeta (fr. 214) y el ejecutante de trompa (fr. 269), y la referencia al peán (fr.121) en sus contextos
Resumo:
El presente artículo analiza la significación de la relativamente frecuente ocurrencia de la terminología musical en los fragmentos de Arquíloco, tal como auloí y ejecutantes de auloí (fr.58.12,269), liras (fr.54.11, 93a lira + aulos), la trompeta (fr. 214) y el ejecutante de trompa (fr. 269), y la referencia al peán (fr.121) en sus contextos
Resumo:
The til-1 locus was identified as a common retroviral integration site in virus-accelerated lymphomas of CD2-myc transgenic mice. We now show that viral insertions at til-1 lead to transcriptional activation of PEBP2αA (CBFA1), a transcription factor related to the Drosophila segmentation gene product, Runt. Insertions are upstream and in the opposite orientation to the gene and appear to activate a variant promoter that is normally silent in T cells. Activity of this promoter was detected in rodent osteogenic sarcoma cells and primary osteoblasts, implicating bone as the normal site of promoter activity. The isoforms encoded by the activated gene all encompass the conserved runt DNA-binding domain and share a novel N terminus different from the previously reported PEBP2αA products. Minor products include isoforms with internal deletions due to exon skipping and a novel C-terminal domain unrelated to known runt domain factors. The major isoform expressed from the activated til-1 locus (G1) was found to account for virtually all of the core binding factor activity in nuclear extracts from its corresponding lymphoma cell line. Another member of this gene family, AML1(CBFA2), is well known for its involvement in human hemopoietic tumors. These results provide evidence of a direct oncogenic role for PEBP2αA and indicate that the Myc and Runt family genes can cooperate in oncogenesis.
Resumo:
Reduced penetrance in genetic disorders may be either dependent or independent of the genetic background of gene carriers. Hirschsprung disease (HSCR) demonstrates a complex pattern of inheritance with ≈50% of familial cases being heterozygous for mutations in the receptor tyrosine kinase RET. Even when identified, the penetrance of RET mutations is only 50–70%, gender-dependent, and varies with the extent of aganglionosis. We searched for additional susceptibility genes which, in conjunction with RET, lead to phenotypic expression by studying 12 multiplex HSCR families. Haplotype analysis and extensive mutation screening demonstrated three types of families: six families harboring severe RET mutations (group I); and the six remaining families, five of which are RET-linked families with no sequence alterations and one RET-unlinked family (group II). Although the presence of RET mutations in group I families is sufficient to explain HSCR inheritance, a genome scan reveals a new susceptibility locus on 9q31 exclusively in group II families. As such, the gene at 9q31 is a modifier of HSCR penetrance. These observations imply that identification of new susceptibility factors in a complex disease may depend on classification of families by mutational type at known susceptibility genes.
Resumo:
The high vocal center (HVC) controls song production in songbirds and sends a projection to the robust nucleus of the archistriatum (RA) of the descending vocal pathway. HVC receives new neurons in adulthood. Most of the new neurons project to RA and replace other neurons of the same kind. We show here that singing enhances mRNA and protein expression of brain-derived neurotrophic factor (BDNF) in the HVC of adult male canaries, Serinus canaria. The increased BDNF expression is proportional to the number of songs produced per unit time. Singing-induced BDNF expression in HVC occurs mainly in the RA-projecting neurons. Neuronal survival was compared among birds that did or did not sing during days 31–38 after BrdUrd injection. Survival of new HVC neurons is greater in the singing birds than in the nonsinging birds. A positive causal link between pathway use, neurotrophin expression, and new neuron survival may be common among systems that recruit new neurons in adulthood.
Resumo:
Conclusive evidence was provided that gamma 1, the upstream of the two linked simian gamma-globin loci (5'-gamma 1-gamma 2-3'), is a pseudogene in a major group of New World monkeys. Sequence analysis of PCR-amplified genomic fragments of predicted sizes revealed that all extant genera of the platyrrhine family Atelidae [Lagothrix (woolly monkeys), Brachyteles (woolly spider monkeys), Ateles (spider monkeys), and Alouatta (howler monkeys)] share a large deletion that removed most of exon 2, all of intron 2 and exon 3, and much of the 3' flanking sequence of gamma 1. The fact that two functional gamma-globin genes were not present in early ancestors of the Atelidae (and that gamma 1 was the dispensible gene) suggests that for much or even all of their evolution, platyrrhines have had gamma 2 as the primary fetally expressed gamma-globin gene, in contrast to catarrhines (e.g., humans and chimpanzees) that have gamma 1 as the primary fetally expressed gamma-globin gene. Results from promoter sequences further suggest that all three platyrrhine families (Atelidae, Cebidae, and Pitheciidae) have gamma 2 rather than gamma 1 as their primary fetally expressed gamma-globin gene. The implications of this suggestion were explored in terms of how gene redundancy, regulatory mutations, and distance of each gamma-globin gene from the locus control region were possibly involved in the acquisition and maintenance of fetal, rather than embryonic, expression.
Resumo:
Mode of access: Internet.
Resumo:
Includes index.