952 resultados para Network architecture
Resumo:
There are still major challenges in the area of automatic indexing and retrieval of digital data. The main problem arises from the ever increasing mass of digital media and the lack of efficient methods for indexing and retrieval of such data based on the semantic content rather than keywords. To enable intelligent web interactions or even web filtering, we need to be capable of interpreting the information base in an intelligent manner. Research has been ongoing for a few years in the field of ontological engineering with the aim of using ontologies to add knowledge to information. In this paper we describe the architecture of a system designed to automatically and intelligently index huge repositories of special effects video clips, based on their semantic content, using a network of scalable ontologies to enable intelligent retrieval.
Resumo:
The relative fast processing speed requirements in Wireless Personal Area Network (WPAN) consumer based products are often in conflict with their low power and cost requirements. In order to solve this conflict the efficiency and cost effectiveness of these products and the underlying functional modules become paramount. This paper presents a low-cost, simple, yet high performance solution for the receiver Channel Estimator and Equalizer for the Mutiband OFDM (MB-OFDM) system, particularly directed to the WiMedia Consortium Physical Later (ECMA-368) consumer implementation for Wireless-USB and Fast Bluetooth. In this paper, the receiver fixed point performance is measured and the results indicate excellent performance compared to the current literature(1).
Resumo:
It is usually expected that the intelligent controlling mechanism of a robot is a computer system. Research is however now ongoing in which biological neural networks are being cultured and trained to act as the brain of an interactive real world robot - thereby either completely replacing or operating in a cooperative fashion with a computer system. Studying such neural systems can give a distinct insight into biological neural structures and therefore such research has immediate medical implications. In particular, the use of rodent primary dissociated cultured neuronal networks for the control of mobile `animals' (artificial animals, a contraction of animal and materials) is a novel approach to discovering the computational capabilities of networks of biological neurones. A dissociated culture of this nature requires appropriate embodiment in some form, to enable appropriate development in a controlled environment within which appropriate stimuli may be received via sensory data but ultimate influence over motor actions retained. The principal aims of the present research are to assess the computational and learning capacity of dissociated cultured neuronal networks with a view to advancing network level processing of artificial neural networks. This will be approached by the creation of an artificial hybrid system (animal) involving closed loop control of a mobile robot by a dissociated culture of rat neurons. This 'closed loop' interaction with the environment through both sensing and effecting will enable investigation of its learning capacity This paper details the components of the overall animat closed loop system and reports on the evaluation of the results from the experiments being carried out with regard to robot behaviour.
Resumo:
The major technical objectives of the RC-NSPES are to provide a framework for the concurrent operation of reactive and pro-active security functions to deliver efficient and optimised intrusion detection schemes as well as enhanced and highly correlated rule sets for more effective alerts management and root-cause analysis. The design and implementation of the RC-NSPES solution includes a number of innovative features in terms of real-time programmable embedded hardware (FPGA) deployment as well as in the integrated management station. These have been devised so as to deliver enhanced detection of attacks and contextualised alerts against threats that can arise from both the network layer and the application layer protocols. The resulting architecture represents an efficient and effective framework for the future deployment of network security systems.
Resumo:
Information architecture (IA) is defined as high level information requirements of an organisation. It is applied in areas such as information systems development, enterprise architecture, business processes management and organisational change management. Still, the lack of methods and theories prevents information architecture becoming a distinct discipline. Healthcare organisation is always seen as information intensive organisation, moreover in a pervasive healthcare environment. Pervasive healthcare aims to provide healthcare services to anyone, anywhere and anytime by incorporating mobile devices and wireless network. Information architecture hence plays an important role in information provisioning within the context of pervasive healthcare in order to support decision making and communication between clinician and patients. Organisational semiotics is one of the social technical approaches that contemplate information through the norms or activities performed within an organisation prior to pervasive healthcare implementation. This paper proposes a conceptual design of information architecture for pervasive healthcare. It is illustrated with a scenario of mental health patient monitoring.
A benchmark-driven modelling approach for evaluating deployment choices on a multi-core architecture
Resumo:
The complexity of current and emerging architectures provides users with options about how best to use the available resources, but makes predicting performance challenging. In this work a benchmark-driven model is developed for a simple shallow water code on a Cray XE6 system, to explore how deployment choices such as domain decomposition and core affinity affect performance. The resource sharing present in modern multi-core architectures adds various levels of heterogeneity to the system. Shared resources often includes cache, memory, network controllers and in some cases floating point units (as in the AMD Bulldozer), which mean that the access time depends on the mapping of application tasks, and the core's location within the system. Heterogeneity further increases with the use of hardware-accelerators such as GPUs and the Intel Xeon Phi, where many specialist cores are attached to general-purpose cores. This trend for shared resources and non-uniform cores is expected to continue into the exascale era. The complexity of these systems means that various runtime scenarios are possible, and it has been found that under-populating nodes, altering the domain decomposition and non-standard task to core mappings can dramatically alter performance. To find this out, however, is often a process of trial and error. To better inform this process, a performance model was developed for a simple regular grid-based kernel code, shallow. The code comprises two distinct types of work, loop-based array updates and nearest-neighbour halo-exchanges. Separate performance models were developed for each part, both based on a similar methodology. Application specific benchmarks were run to measure performance for different problem sizes under different execution scenarios. These results were then fed into a performance model that derives resource usage for a given deployment scenario, with interpolation between results as necessary.
Resumo:
Pervasive healthcare aims to deliver deinstitutionalised healthcare services to patients anytime and anywhere. Pervasive healthcare involves remote data collection through mobile devices and sensor network which the data is usually in large volume, varied formats and high frequency. The nature of big data such as volume, variety, velocity and veracity, together with its analytical capabilities com-plements the delivery of pervasive healthcare. However, there is limited research in intertwining these two domains. Most research focus mainly on the technical context of big data application in the healthcare sector. Little attention has been paid to a strategic role of big data which impacts the quality of healthcare services provision at the organisational level. Therefore, this paper delivers a conceptual view of big data architecture for pervasive healthcare via an intensive literature review to address the aforementioned research problems. This paper provides three major contributions: 1) identifies the research themes of big data and pervasive healthcare, 2) establishes the relationship between research themes, which later composes the big data architecture for pervasive healthcare, and 3) sheds a light on future research, such as semiosis and sense-making, and enables practitioners to implement big data in the pervasive healthcare through the proposed architecture.
Resumo:
The resource based view of strategy suggests that competitiveness in part derives from a firms ability to collaborate with a subset of its supply network to co-create highly valued products and services. This relational capability relies on a foundational intra and inter-organisational architecture, the manifestation of strategic, people, and process decisions facilitating the interface between the firm and its strategic suppliers. Using covariance-based structural equation modelling we examine the relationships between internal and external features of relational architecture, and their relationship with relational capability and relational quality. This is undertaken on data collected by mail survey. We find significant relationships between both internal and external relational architecture and relational capability and between relational capability and relational quality. Novel constructs for internal and external elements of relational architecture are specified to demonstrate their positive influence on relational capability and relationship quality.
Resumo:
This work presents a methodology to analyze transient stability (first oscillation) of electric energy systems, using a neural network based on ART architecture (adaptive resonance theory), named fuzzy ART-ARTMAP neural network for real time applications. The security margin is used as a stability analysis criterion, considering three-phase short circuit faults with a transmission line outage. The neural network operation consists of two fundamental phases: the training and the analysis. The training phase needs a great quantity of processing for the realization, while the analysis phase is effectuated almost without computation effort. This is, therefore the principal purpose to use neural networks for solving complex problems that need fast solutions, as the applications in real time. The ART neural networks have as primordial characteristics the plasticity and the stability, which are essential qualities to the training execution and to an efficient analysis. The fuzzy ART-ARTMAP neural network is proposed seeking a superior performance, in terms of precision and speed, when compared to conventional ARTMAP, and much more when compared to the neural networks that use the training by backpropagation algorithm, which is a benchmark in neural network area. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This work presents a neural network based on the ART architecture ( adaptive resonance theory), named fuzzy ART& ARTMAP neural network, applied to the electric load-forecasting problem. The neural networks based on the ARTarchitecture have two fundamental characteristics that are extremely important for the network performance ( stability and plasticity), which allow the implementation of continuous training. The fuzzy ART& ARTMAP neural network aims to reduce the imprecision of the forecasting results by a mechanism that separate the analog and binary data, processing them separately. Therefore, this represents a reduction on the processing time and improved quality of the results, when compared to the Back-Propagation neural network, and better to the classical forecasting techniques (ARIMA of Box and Jenkins methods). Finished the training, the fuzzy ART& ARTMAP neural network is capable to forecast electrical loads 24 h in advance. To validate the methodology, data from a Brazilian electric company is used. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This work presents a methodology to analyze electric power systems transient stability for first swing using a neural network based on adaptive resonance theory (ART) architecture, called Euclidean ARTMAP neural network. The ART architectures present plasticity and stability characteristics, which are very important for the training and to execute the analysis in a fast way. The Euclidean ARTMAP version provides more accurate and faster solutions, when compared to the fuzzy ARTMAP configuration. Three steps are necessary for the network working, training, analysis and continuous training. The training step requires much effort (processing) while the analysis is effectuated almost without computational effort. The proposed network allows approaching several topologies of the electric system at the same time; therefore it is an alternative for real time transient stability of electric power systems. To illustrate the proposed neural network an application is presented for a multi-machine electric power systems composed of 10 synchronous machines, 45 buses and 73 transmission lines. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A Internet atual vem sofrendo vários problemas em termos de escalabilidade, desempenho, mobilidade, etc., devido ao vertiginoso incremento no número de usuários e o surgimento de novos serviços com novas demandas, propiciando assim o nascimento da Internet do Futuro. Novas propostas sobre redes orientadas a conteúdo, como a arquitetura Entidade Titulo (ETArch), proveem novos serviços para este tipo de cenários, implementados sobre o paradigma de redes definidas por software. Contudo, o modelo de transporte do ETArch é equivalente ao modelo best-effort da Internet atual, e vem limitando a confiabilidade das suas comunicações. Neste trabalho, ETArch é redesenhado seguindo o paradigma do sobreaprovisionamento de recursos para conseguir uma alocação de recursos avançada integrada com OpenFlow. Como resultado, o framework SMART (Suporte de Sessões Móveis com Alta Demanda de Recursos de Transporte), permite que a rede defina semanticamente os requisitos qualitativos das sessões para assim gerenciar o controle de Qualidade de Serviço visando manter a melhor Qualidade de Experiência possível. A avaliação do planos de dados e de controle teve lugar na plataforma de testes na ilha do projeto OFELIA, mostrando o suporte de aplicações móveis multimídia com alta demanda de recursos de transporte com QoS e QoE garantidos através de um esquema de sinalização restrito em comparação com o ETArch legado
Resumo:
Economic Dispatch (ED) problems have recently been solved by artificial neural networks approaches. In most of these dispatch models, the cost function must be linear or quadratic. Therefore, functions that have several minimum points represent a problem to the simulation since these approaches have not accepted nonlinear cost function. Another drawback pointed out in the literature is that some of these neural approaches fail to converge efficiently towards feasible equilibrium points. This paper discusses the application of a modified Hopfield architecture for solving ED problems defined by nonlinear cost function. The internal parameters of the neural network adopted here are computed using the valid-subspace technique, which guarantees convergence to equilibrium points that represent a solution for the ED problem. Simulation results and a comparative analysis involving a 3-bus test system are presented to illustrate efficiency of the proposed approach.
Resumo:
The vascular segment of the caudal vena cava of the dog at the level of the caudate lobe was shown to be intimately related to hepatic tissue through the hepatic capsule and parenchyma. The tunica adventitia of the caudal vena cava was formed mainly by smooth muscle cells with collagen and elastic fibers arranged in bundles. The thin tunica media of the vein was also formed by smooth muscle cells, collagen and elastic fibers arranged in bundles. The tunica intima presented an elastic sub-endothelial network. The hepatic segment of the caudal vena cava showed a myoconnective architecture and propulsive characteristics in terms of its hemodynamic pattern.
Resumo:
This work presents a methodology to analyze transient stability for electric energy systems using artificial neural networks based on fuzzy ARTMAP architecture. This architecture seeks exploring similarity with computational concepts on fuzzy set theory and ART (Adaptive Resonance Theory) neural network. The ART architectures show plasticity and stability characteristics, which are essential qualities to provide the training and to execute the analysis. Therefore, it is used a very fast training, when compared to the conventional backpropagation algorithm formulation. Consequently, the analysis becomes more competitive, compared to the principal methods found in the specialized literature. Results considering a system composed of 45 buses, 72 transmission lines and 10 synchronous machines are presented. © 2003 IEEE.