972 resultados para Navarro
Resumo:
Uno de los problemas centrales que se presentan, para abordar el tema de límite, es sin duda cuando nos enfrentamos al concepto de infinito. Generalmente el docente al enseñar el concepto de infinito utiliza metáforas didácticas basadas en conjuntos muy grandes, esto para fijar la idea de infinitud. De acuerdo con la real academia española, esto permite crear la noción de infinito en un lenguaje cotidiano, lo que lleva a generar una mala formación de este concepto, dentro de un lenguaje matemático, ya que la imprecisión del lenguaje cotidiano hace ver al concepto de infinito muy vago y se aleja de la idea matemática como unidad total (Ortiz, 1994). El interés de nuestro trabajo se centra precisamente en el diseño de actividades, donde el estudiante pueda realizar y observar un proceso infinito, a través de ejemplos geométricos donde se presente la situación límite (proceso infinito culminado), permitiendo la formación del concepto de límite.
Resumo:
Se reporta parte de una investigación que trata sobre el estudio local de la proporcionalidad geométrica y su articulación con el resto de los temas –particularmente la trigonometría– que conforman el curso de Matemáticas III del plan de estudios de escuelas preparatorias incorporadas a la Universidad de Sonora. En este extracto, se proponen algunos constructos de la Teoría Antropológica de lo Didáctico (TAD) que fundamentaron el estudio, y que en este documento tienen el propósito de darle sentido a la presentación del Marco Epistemológico de Referencia, el cual fue pieza clave en el estudio mencionado, tanto para determinar el nivel de articulación existente, como para contar con una base para proponer acciones específicas acordes a la articulación propuesta, de tal modo que mediante ellas fuera factible una construcción funcional de los conocimientos geométricos.
Resumo:
Los problemas combinatorios tienen profundas implicaciones tanto en el desarrollo de algunas ramas de la Matemática como en otras disciplinas (Batanero, Godino y Navarro-Pelayo, 1994). Una mención especial merece el papel de la Combinatoria en la Probabilidad, ya que una escasa capacidad del razonamiento combinatorio reduce la aplicación del concepto de Probabilidad a casos muy sencillos o de fácil enumeración (Piaget e Inhelder, 1951). Debido a la importancia del tema, decidimos concentrarnos en su tratamiento en algunos libros de texto de Matemáticas de Educación Secundaria. Nos basamos en el desarrollo de la teoría de los significados sistémicos, desarrollada por Godino y colaboradores, para considerar el libro de texto como una institución y, en ese contexto, el problema de investigación abordado es la caracterización del significado institucional del objeto matemático “Combinatoria” en los libros de texto citados.
Resumo:
Se aportan datos morfológicos, químicos y de distribución de seis especies de las familias Baeomycetaceae (Baeomyces) e Icmadophilaceae (Dibaeis, Icmadophila, Thamnolia) presentes en la Península Ibérica. Se publican numerosas nuevas citas de Baeomyces rufus y de Dibaeis baeomyces, que constituyen las especies más frecuentes y abundantes en la península.