999 resultados para Natural Computation
Resumo:
Brushtail possums, Trichosurus vulpecula Kerr, were experimentally infected with Ross River (RR) or Barmah Forest (BF) virus by Aedes vigilax (Skuse) mosquitoes. Eight of 10 animals exposed to RR virus developed neutralizing antibody, and 3 possums developed high viremia for < 48 hr after infection, sufficient to infect recipient mosquitoes. Two of 10 animals exposed to BF virus developed neutralizing antibody. Both infected possums maintained detectable neutralizing antibody to BF for at least 45 days after infection (log neutralization index > 2.0 at 45 days). Eight possums did not develop neutralizing antibody to BF despite exposure to infected mosquitoes. These results suggest that T. vulpecula may potentially act as a reservoir species for RR in urban areas. However, T. vulpecula infected with BF do not develop viremia sufficient to infect mosquitoes and are unlikely to be important hosts for BF.
Resumo:
Sympatric individuals of Rattus fuscipes and Rattus leucopus, two Australian native rats from the tropical wet forests of north Queensland, are difficult to distinguish morphologically and are often confused in the field. When we started a study on fine-scale movements of these species, using microsatellite markers, we found that the species as identified in the field did not form coherent genetic groups. In this study, we examined the potential of an iterative process of genetic assignment to separate specimens from distinct (e.g. species, populations) natural groups. Five loci with extensive overlap in allele distributions between species were used for the iterative process. Samples were randomly distributed into two starting groups of equal size and then subjected to the test. At each iteration, misassigned samples switched groups, and the output groups from a given round of assignment formed the input groups for the next round. All samples were assigned correctly on the 10th iteration, in which two genetic groups were clearly separated. Mitochondrial DNA sequences were obtained from samples from each genetic group identified by assignment, together with those of museum voucher specimens, to assess which species corresponded to which genetic group. The iterative procedure was also used to resolve groups within species, adequately separating the genetically identified R. leucopus from our two sampling sites. These results show that the iterative assignment process can correctly differentiate samples into their appropriate natural groups when diagnostic genetic markers are not available, which allowed us to resolve accurately the two R. leucopus and R. fuscipes species. Our approach provides an analytical tool that may be applicable to a broad variety of situations where genetic groups need to be resolved.
Resumo:
Human V alpha 24 natural killer T (V alpha 24NKT) cells are activated by -glycosylceramide-pulsed dendritic cells (DCs) in a CDld-dependent and T-cell receptor-mediated manner. There are two major subpopulations of V alpha 24NKT cells, CD4(-) CD8(-) V alpha 24NKT and CD4(+) V alpha 24NKT cells. We have recently shown that activated CD4(-) CD8 V alpha 24NKT cells have cytotoxic activity against DCs, but knowledge of the molecules responsible for cytotoxicity of V alpha 24NKT cells is currently limited. We aimed to investigate whether CD4(+) V alpha 24NKT cells also have cytotoxic activity against DCs and to determine the mechanisms underlying any observed cytotoxic activity. We demonstrated that activated CD4(+) V alpha 24NKT cells [CD40 ligand (CD40L) -positive] have cytotoxic activity against DCs (strongly CD40-positive), but not against monocytes (weakly CD40-positive) or phytohaemagglutinin blast T cells (CD40-negative), and that apoptosis of DCs significantly contributes to the observed cytotoxicity. The apoptosis of DCs following culture with activated CD4(+) V alpha 24NKT cells, but not with resting CD4(+) V alpha 24NKT cells (CD40L-negative), was partially inhibited by anti-CD40L mAb, Direct ligation of CD40 on the DCs by the anti-CD40 antibody also induced apoptosis of DCs. Our results suggest that CD40-CD40L interaction plays an important role in the induction of apoptosis of DCs following culture with activated CD4+ Va24NKT cells. The apoptosis of DCs from normal donors. triggered by the CD40-CD40L interaction, may contribute to the homeostatic regulation of the normal human immune system, preventing the interminable activation of activated CD4(+) V alpha 24NKT cells by virtue of apoptosis of DCs.
Resumo:
Pteropid bats (flying foxes), species of which are the probable natural host of both Hendra and Nipah viruses, occur in overlapping populations from India to Australia. Ecological changes associated with land use and with animal husbandry practices appear most likely to be associated with the emergence of these two agents. (C) 2001 Editions scientifiques et medicales Elsevier SAS.
Resumo:
The design of open-access elliptical cross-section magnet systems has recently come under consideration. Obtaining values for the forces generated within these unusual magnets is important to progress the designs towards feasible instruments. This paper presents a novel and flexible method for the rapid computation of forces within elliptical magnets. The method is demonstrated by the analysis of a clinical magnetic resonance imaging magnet of elliptical cross-section and open design. The analysis reveals the non-symmetric nature of the generated Maxwell forces, which are an important consideration, particularly in the design of superconducting systems.
Resumo:
Like many positive-strand RNA viruses, replication of the hepatitis C virus (HCV) is associated with cytoplasmic membrane rearrangements. However, it is unclear which HCV Proteins induce these ultrastructural features. This work examined the morphological changes induced by expression of the HCV structural proteins, core, E1 and E2, expressed from a Semliki Forest Virus (SFV) recombinant RNA replicon. Electron microscopy of cells expressing these proteins showed cytoplasmic vacuoles containing membranous and electron-dense material that were distinct from the type I cytoplasmic vacuoles induced during SFV replicon replication. Immunogold labelling showed that the core and E2 proteins localized to the external and internal membranes of these vacuoles. At times were also associated with some of the internal amorphous material. Dual immunogold labelling with antibodies raised against the core protein and against an endoplasmic reticulum (ER)-resident protein (protein disulphide isomerase) showed that the HCV-induced vacuoles were associated with ER-labelled membranes. This report has identified an association between the HCV core and E2 proteins with induced cytoplasmic vacuoles which are morphologically similar to those observed in HCV-infected liver tissue, suggesting that the HCV structural proteins may be responsible for the induction of these vacuoles during HCV replication in vivo.
Resumo:
The interaction between natural and sexual selection is central to many theories of how mate choice and reproductive isolation evolve, but their joint effect on the evolution of mate recognition has not, to my knowledge, been investigated in an evolutionary experiment. Natural and sexual selection were manipulated in interspecific hybrid populations of Drosophila to determine their effects on the evolution of a mate recognition system comprised of cuticular hydrocarbons (CHCs). The effect of natural selection in isolation indicated that CHCs were costly for males and females to produce. The effect of sexual selection in isolation indicated that females preferred males with a particular CHC composition. However, the interaction between natural and sexual selection had a greater effect on the evolution of the mate recognition system than either process in isolation. When natural and sexual selection were permitted to operate in combination, male CHCs became exaggerated to a greater extent than in the presence of sexual selection alone, and female CHCs evolved against the direction of natural selection. This experiment demonstrated that the interaction between natural and sexual selection is critical in determining the direction and magnitude of the evolutionary response of the mate recognition system.
Resumo:
Time-depth recorders were used to investigate the diving performance and behaviour of two bimodally respiring turtle species, Rheodytes leukops and Emydura niacquarii, known to have a high and low reliance on aquatic respiration, respectively. Significant differences in diving performance between R. leukops and E. macquarii were observed in the number of dives/day (39.3 +/- 5.38 vs 112.2 +/- 11.73 dives/day; mean +/- SE), mean dive length (33.1 +/- 7.33 min vs 9.6 +/- 2.26 min) and maximum dive length (623 +/- 104.74 min vs 67.1 +/- 8.14 min), respectively. Differences in diving performance between R. leukops and E macquarii are attributed to the species' reliance (or lack thereof) upon aquatic respiration. Rheodytes leukops displayed a weak bimodal pattern of increased surfacing frequency in the early morning (05:00-07:00) and late afternoon (14:00-18:00), while E. macquarii displayed a strong bimodal pattern of elevated surfacing frequency over similar time periods. Daily patterns of increased surfacing frequency for both species failed to correlate with fluctuating aquatic Po-2 levels or water temperature, and may instead be explained by the heightened activity levels of both species during twilight.
Resumo:
Read-only-memory-based (ROM-based) quantum computation (QC) is an alternative to oracle-based QC. It has the advantages of being less magical, and being more suited to implementing space-efficient computation (i.e., computation using the minimum number of writable qubits). Here we consider a number of small (one- and two-qubit) quantum algorithms illustrating different aspects of ROM-based QC. They are: (a) a one-qubit algorithm to solve the Deutsch problem; (b) a one-qubit binary multiplication algorithm; (c) a two-qubit controlled binary multiplication algorithm; and (d) a two-qubit ROM-based version of the Deutsch-Jozsa algorithm. For each algorithm we present experimental verification using nuclear magnetic resonance ensemble QC. The average fidelities for the implementation were in the ranges 0.9-0.97 for the one-qubit algorithms, and 0.84-0.94 for the two-qubit algorithms. We conclude with a discussion of future prospects for ROM-based quantum computation. We propose a four-qubit algorithm, using Grover's iterate, for solving a miniature real-world problem relating to the lengths of paths in a network.
Resumo:
A finite-element method is used to study the elastic properties of random three-dimensional porous materials with highly interconnected pores. We show that Young's modulus, E, is practically independent of Poisson's ratio of the solid phase, nu(s), over the entire solid fraction range, and Poisson's ratio, nu, becomes independent of nu(s) as the percolation threshold is approached. We represent this behaviour of nu in a flow diagram. This interesting but approximate behaviour is very similar to the exactly known behaviour in two-dimensional porous materials. In addition, the behaviour of nu versus nu(s) appears to imply that information in the dilute porosity limit can affect behaviour in the percolation threshold limit. We summarize the finite-element results in terms of simple structure-property relations, instead of tables of data, to make it easier to apply the computational results. Without using accurate numerical computations, one is limited to various effective medium theories and rigorous approximations like bounds and expansions. The accuracy of these equations is unknown for general porous media. To verify a particular theory it is important to check that it predicts both isotropic elastic moduli, i.e. prediction of Young's modulus alone is necessary but not sufficient. The subtleties of Poisson's ratio behaviour actually provide a very effective method for showing differences between the theories and demonstrating their ranges of validity. We find that for moderate- to high-porosity materials, none of the analytical theories is accurate and, at present, numerical techniques must be relied upon.
Resumo:
delta(15)N signatures of fossil peat were used to interpret past ecosystem processes on tectonically active subantarctic Macquarie Island. By comparing past vegetation reconstructed from the fossil record with present-day vegetation analogues, our evidence strongly suggests that changes in the delta(15)N signatures of fossil peat at this location reflect mainly past changes in the proportion of plant nitrogen derived from animal sources. Associated with uplift above sea level over the past 8,500 years, fossil records in two peat deposits on the island chronicle a change from coastal vegetation with fur and elephant seal disturbance to the existing inland herbfield. Coupled with this change are synchronous changes in the delta(15)N signatures of peat layers. At two sites N-15-enriched peat delta(15)N signatures of up to +17parts per thousand were associated with a high abundance of pollen of the nitrophile Callitriche antarctica (Callitrichaceae). At one site fossil seal hair was also associated with enriched peat delta(15)N. Less N-15 enriched delta(15)N signatures (e.g. -1.9parts per thousand to +3.9parts per thousand) were measured in peat layers which lacked animal associated C. antarctica and Acaena spp. Interpretation of a third peat profile indicates continual occupation of a ridge site by burrowing petrels for most of the Holocene. We suggest that N-15 signatures of fossil peat remained relatively stable with time once deposited, providing a significant new tool for interpreting the palaeoecology.
Resumo:
The measurement of natural N-15 abundance is a well-established technique for the identification and quantification of biological N-2 fixation in plants. Associative N-2 fixing bacteria have been isolated from sugarcane and reported to contribute potentially significant amounts of N to plant growth and development. It has not been established whether Australian commercial sugarcane receives significant input from biological N-2 fixation, even though high populations of N-2 fixing bacteria have been isolated from Australian commercial sugarcane fields and plants. In this study, delta(15)N measurements were used as a primary measure to identify whether Australian commercial sugarcane was obtaining significant inputs of N via biological N-2 fixation. Quantification of N input, via biological N-2 fixation, was not possible since suitable non-N-2 fixing reference plants were not present in commercial cane fields. The survey of Australian commercially grown sugarcane crops showed the majority had positive leaf delta(15)N values (73% >3.00parts per thousand, 63% of which were
Resumo:
What interactions are sufficient to simulate arbitrary quantum dynamics in a composite quantum system? We provide an efficient algorithm to simulate any desired two-body Hamiltonian evolution using any fixed two-body entangling n-qubit Hamiltonian and local unitary operations. It follows that universal quantum computation can be performed using any entangling interaction and local unitary operations.