774 resultados para Nanocrystals


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we report on visible upconversion emission in Er 3+-, and Ho3+-doped PbGeO3-PbF 2-CdF2-based transparent glass ceramics under 980 nm infrared excitation. In erbium-doped vitroceramic samples, blue(410 ran), green(530, and 550 nm) and red(660 nm) emission signals were generated, which were identified as due to the 2H9/2, 2H 11/2, 4S3/2, and 4F9/2 transitions to the 4I15/2 ground-state, respectively. Intense red(650 nm) upconversion emission corresponding to the 5F5 - 5I8 transition and very small blue(490 nm) and green(540 nm) signals assigned to the 5F 2,3 - 5I8 and 4S2, 5F4 - 5I8 transitions, respectively, were observed in the holmium-doped samples. The 540 nm is the dominant upconversion signal in Ho3+-doped vitroceramics under 850 nm excitation. The dependence of the upconversion processes upon pump power and doping concentration are also investigated, and the main routes for the upconversion excitation processes are also identified. The comparison of the upconversion process in transparent glass ceramics and the precursor glass was also examined and the results revealed that the former present higher upconversion efficiencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This communication reports that FeWO 4 nanocrystals were successfully synthesized by the microwave-hydrothermal method at 443 K for 1 h. The structure and shape of these nanocrystals were characterized by X-ray diffraction, Rietveld refinement, and transmission electron microscopy. The experimental results and first principles calculations were combined to explain the electronic structure and magnetic properties. Experimental data were obtained by magnetization measurements for different applied magnetic fields. Theoretical calculations revealed that magnetic properties of FeWO 4 nanocrystals can be assigned to two magnetic orderings with parallel or antiparallel spins in adjacent chains. These factors are crucial to understanding of competition between ferro- and antiferromagnetic behavior. © 2012 Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study is to characterize the corrosion product on the surface of silver, employing H2SO4 (0.5M) as electrolyte. The electrochemical parameters, Ecor, Icor, V cor and Rp were obtained after analyzing the potentiodynamic polarization curve in which two peaks were observed. The smallest (passive region) is attributed to the Cl- traces from the reference electrode, with micro-cracks. The second peak (in the transpassivation region) corresponds to the polarization curve of silver in H2SO 4 without contaminants. SEM images and EDS analysis reveal images of a surface layer on silver, consisting of structures containing sulfur, oxygen, silver and chloride, as the corrosion product. On this layer silver sulfate crystals were observed, which occurs during the formation of silver chloride nanocrystals with different morphologies, when chloride ions were added to the electrolyte medium. ©The Electrochemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical approach aiming at the prediction of segregation of dopant atoms on nanocrystalline systems is discussed here. It considers the free energy minimization argument in order to provide the most likely dopant distribution as a function of the total doping level. For this, it requires as input (i) a fixed polyhedral geometry with defined facets, and (ii) a set of functions that describe the surface energy as a function of dopant content for different crystallographic planes. Two Sb-doped SnO2 nanocrystalline systems with different morphology and dopant content were selected as a case study, and the calculation of the dopant distributions expected for them is presented in detail. The obtained results were compared to previously reported characterization of this system by a combination of HRTEM and surface energy calculations, and both methods are shown to be equivalent. Considering its application pre-requisites, the present theoretical approach can provide a first estimation of doping atom distribution for a wide range of nanocrystalline systems. We expect that its use will support the reduction of experimental effort for the characterization of doped nanocrystals, and also provide a solution to the characterization of systems where even state-of-art analytical techniques are limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the synthesis of highly conducting antimony-doped tin oxide (ATO) nanocrystals prepared via a nonaqueous sol–gel route in the size range of 4–6 nm and provides insights into its electrical properties. The antimony composition was varied from 1 to 18 mol% and the lowest resistivity (4.0 × 10−4Ω·cm) was observed at room temperature in the SnO2:8.8 mol% Sb composition. The samples were evaluated by X-ray diffraction, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, and scanning electron microscope, and resistivity measurements were taken in the four-probe mode in the temperature range of 13–300 K. The results show highly crystalline nanoparticles in a monodisperse colloidal system, dependence on the shape of ATO nanoparticles as a function of Sb distribution, low resistivity, and semiconductor–metal transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the first observation of photoluminescence enhancement in Er3+ doped GeO2-Bi2O3 glasses containing silicon nanocrystals (Si-NCs) excited by a laser operating at 980 nm. The growth of approximate to 200% in the intensity of the Er3+ transition S-4(3/2) -> I-4(15/2) (545 nm) and of approximate to 100% for transitions H-2(11/2) -> I-4(15/2) (525 nm), F-4(9/2) -> I-4(15/2) (660 nm), and I-4(5/2) -> I-4(13/2) (1530 nm) was observed in comparison with a reference sample that does not contain Si-NCs. The results open a new road for obtaining efficient Stokes and anti-Stokes emissions in germanate composites doped with rare-earth ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This communication is a report of our initial research to obtain iron tungstate (FeWO4) nanocrystals by the microwave-hydrothermal method at 170 degrees C for 45 min. X-ray diffraction patterns showed that the FeWO4 nanocrystals prepared with polyethylene glycol-200 have a partial preferential orientation in the (011) plane in relation to other nanocrystals prepared with sodium bis(2-ethylhexyl) sulfosuccinate and water. Rietveld refinement data indicates that all nanocrystals are monophasic with wolframite-type monoclinic structures and exhibit different distortions on octahedral [FeO6]/[WO6] clusters. High resolution transmission electron microcopy revealed an oriented attachment mechanism for the growth of aggregated FeWO4 nanocrystals. Finally, we observed that the photoluminescence properties of these nanocrystals are affected by partial preferential orientation in the (011) plane and distortions on [FeO6]/[WO6] clusters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work reports evidence of the induced migration of Mn2+ ions in Cd(1-x)MnxS nanocrystals (NCs) by selecting a specific thermal treatment for each sample. The growth and characterization of these magnetic dots were investigated by atomic force microscopy (AFM), optical absorption (OA), and electronic paramagnetic resonance (EPR) techniques. The comparison of experimental and simulated EPR spectra confirms the incorporation of Mn2+ ions both in the core and at the dot surface regions. The thermal treatment of a magnetic sample, via selected annealing temperature and/or time, affects the fine and hyperfine interaction constants which modify the shape and the intensity of the EPR transition spectrum. The identification of these changes has allowed tracing the magnetic ion migration from core to surface regions of a dot as well as inferring the local density of the magnetic impurity ions. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exploration of novel synthetic methodologies that control both size and shape of functional nanostructure opens new avenues for the functional application of nanomaterials. Here, we report a new and versatile approach to synthesize SnO2 nanocrystals (rutile-type structure) using microwave-assisted hydrothermal method. Broad peaks in the X-ray diffraction spectra indicate the nanosized nature of the samples which were indexed as a pure cassiterite tetragonal phase. Chemically and physically adsorbed water was estimated by TGA data and FT-Raman spectra to account for a new broad peak around 560 cm(-1) which is related to defective surface modes. In addition, the spherical-like morphology and low dispersed distribution size around 3-5 nm were investigated by HR-TEM and FE-SEM microscopies. Room temperature PL emission presents two broad bands at 438 and 764 nm, indicating the existence of different recombination centers. When the size of the nanospheres decreases, the relative intensity of 513 nm emission increases and the 393 nm one decreases. UV-Visible spectra show substantial changes in the optical absorbance of crystalline SnO2 nanoparticles while the existence of a small tail points out the presence of localized levels inside the forbidden band gap and supplies the necessary condition for the PL emission.