482 resultados para NV-homographs


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ionic liquids have received significant interest from research groups and industry for a range of novel applications. Many of these require a thorough knowledge of the thermophysical properties of the pure fluids and their mixtures. Despite this need, the necessary experimental data for many properties are scarce and often inconsistent between the various sources. However, by using accurate data, predictive physical models can be developed which are highly useful, and some would consider essential, if ionic liquids are to realise their full potential. This is particularly true if one can use them to design new ionic liquids which maximise key desired attributes. This paper will review some of the recent advances in our understanding, prediction and correlation of selected ionic liquid physical properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A quantitative duplex time-resolved fluorescence assay, dissociation-enhanced lanthanide fluorescent immunoassay (DELFIA), was developed to measure Norwalk virus (NV)-specific IgA and IgG antibodies simultaneously. The duplex assay showed superior performance by detecting seroconversion following experimental NV infection at an earlier time point than a reference total immunoglobulin enzyme-linked immunosorbent assay (ELISA).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Norovirus infection is the leading cause of acute nonbacterial gastroenteritis. Histoblood group antigens (HBGAs) are host susceptibility determinants for Norwalk virus (NV) infection. We hypothesized that antibodies that block NV-HBGA binding are associated with protection from clinical illness following NV exposure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Retinal vascular leakage, inflammation, and neovascularization (NV) are features of diabetic retinopathy (DR). Fenofibrate, a peroxisome proliferator-activated receptor a (PPARa) agonist, has shown robust protective effects against DR in type 2 diabetic patients, but its effects on DR in type 1 diabetes have not been reported. This study evaluated the efficacy of fenofibrate on DR in type 1 diabetes models and determined if the effect is PPARa dependent. Oral administration of fenofibrate significantly ameliorated retinal vascular leakage and leukostasis in streptozotocin-induced diabetic rats and in Akita mice. Favorable effects on DR were also achieved by intravitreal injection of fenofibrate or another specific PPARa agonist. Fenofibrate also ameliorated retinal NV in the oxygen-induced retinopathy (OIR) model and inhibited tube formation and migration in cultured endothelial cells. Fenofibrate also attenuated overexpression of intercellular adhesion molecule-1, monocyte chemoattractant protein-1, and vascular endothelial growth factor (VEGF) and blocked activation of hypoxia-inducible factor-1 and nuclear factor-?B in the retinas of OIR and diabetic models. Fenofibrate's beneficial effects were blocked by a specific PPARa antagonist. Furthermore, Ppara knockout abolished the fenofibrate-induced downregulation of VEGF and reduction of retinal vascular leakage in DR models. These results demonstrate therapeutic effects of fenofibrate on DR in type 1 diabetes and support the existence of the drug target in ocular tissues and via a PPARa-dependent mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Noroviruses (NoVs) are the most common cause of epidemic gastroenteritis, responsible for at least 50% of all gastroenteritis outbreaks worldwide and were recently identified as a leading cause of travelers' diarrhea (TD) in US and European travelers to Mexico, Guatemala, and India.

Methods: Serum and diarrheic stool samples were collected from 75 US student travelers to Cuernavaca, Mexico, who developed TD. NoV RNA was detected in acute diarrheic stool samples using reverse transcription-polymerase chain reaction (RT-PCR). Serology assays were performed using GI.1 Norwalk virus (NV) and GII.4 Houston virus (HOV) virus-like particles (VLPs) to measure serum levels of immunoglobulin A (IgA) and IgG by dissociation-enhanced lanthanide fluorescent immunoassay (DELFIA); serum IgM was measured by capture enzyme-linked immunosorbent assay (ELISA), and the 50% antibody-blocking titer (BT50 ) was determined by a carbohydrate-blocking assay.

Results: NoV infection was identified in 12 (16%; 9 GI-NoV and 3 GII-NoV) of 75 travelers by either RT-PCR or fourfold or more rise in antibody titer. Significantly more individuals had detectable preexisting IgA antibodies against HOV (62/75, 83%) than against NV (49/75, 65%) (p = 0.025) VLPs. A significant difference was observed between NV- and HOV-specific preexisting IgA antibody levels (p = 0.0037), IgG (p = 0.003), and BT50 (p = <0.0001). None of the NoV-infected TD travelers had BT50  > 200, a level that has been described previously as a possible correlate of protection.

Conclusion: We found that GI-NoVs are commonly associated with TD cases identified in US adults traveling to Mexico, and seroprevalence rates and geometric mean antibody levels to a GI-NoV were lower than to a GII-NoV strain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper uses a comparative perspective to analyze how multiracial congregations may contribute to racial reconciliation in South Africa. Drawing on the large-scale study of multiracial congregations in the USA by Emerson et al., it examines how they help transform antagonistic identities and make religious contributions to wider reconciliation processes. It compares the American research to an ethnographic study of a congregation in Cape Town, identifying cross-national patterns and South African distinctives, such as discourses about restitution, AIDS, inequality and women. The extent that multiracial congregations can contribute to reconciliation in South Africa is linked to the content of their worship and discourses, but especially to their ability to dismantle racially aligned power structures. © Koninklijke Brill NV, 2008.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Subjects with significant peripheral field loss (PFL) self report difficulty in street crossing. In this study, we compared the traffic gap judgment ability of fully sighted and PFL subjects to determine whether accuracy in identifying crossable gaps was adversely affected because of field loss. Moreover, we explored the contribution of visual and nonvisual factors to traffic gap judgment ability. METHODS: Eight subjects with significant PFL as a result of advanced retinitis pigmentosa or glaucoma with binocular visual field <20 degrees and five age-matched normals (NV) were recruited. All subjects were required to judge when they perceived it was safe to cross at a 2-way 4-lane street while they stood on the curb. Eye movements were recorded by an eye tracker as the subjects performed the decision task. Movies of the eye-on-scene were made offline and fixation patterns were classified into either relevant or irrelevant. Subjects' street-crossing behavior, habitual approach to street crossing, and perceived difficulties were assessed. RESULTS: Compared with normal vision (NV) subjects, the PFL subjects identified 12% fewer crossable gaps while making 23% more errors by identifying a gap as crossable when it was too short (p < 0.05). The differences in traffic gap judgment ability of the PFL subjects might be explained by the significantly smaller fixation area (p = 0.006) and fewer fixations distributed to the relevant tasks (p = 0.001). The subjects' habitual approach to street crossing and perceived difficulties in street crossing (r > 0.60) were significantly correlated with traffic gap judgment performance. CONCLUSIONS: As a consequence of significant field loss, limited visual information about the traffic environment can be acquired, resulting in significantly reduced performance in judging safe crossable gaps. This poor traffic gap judgment ability in the PFL subjects raises important concerns for their safety when attempting to cross the street.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Absolute photoionization cross-section calculations are presented for Se + using large-scale close-coupling calculations within the Breit--Pauli and Dirac--Coulomb R -matrix approximations. The results from our theoretical work are compared with recent measurements (Esteves 2010 PhD Thesis publication number AAI3404727, University of Reno, NV, USA; Sterling et al 2011 J. Phys. B: At. Mol. Opt. Phys. 44 025701; Esteves et al 2011 Phys. Rev. A 84 013406) made at the advanced light source (ALS) radiation facility in Berkeley, CA, USA. We report on results for the photon energy range 18.0--31.0 eV, which spans the ionization thresholds of the 4 S o 3/2 ground state and the low-lying 2 D o 5/2,3/2 and 2 P o 3/2,1/2 metastable states. Metastable fractions are inferred from our present work. Resonance energies and quantum defects of the prominent Rydberg resonances series identified in the spectra are compared for the 4p → n d transitions with the recent ALS experimental measurements made on this complex trans-iron element.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is about the combination of functional ferroelectric oxides with Multiwall Carbon Nanotubes for microelectronic applications, as for example potential 3 Dimensional (3D) Non Volatile Ferroelectric Random Access Memories (NVFeRAM). Miniaturized electronics are ubiquitous now. The drive to downsize electronics has been spurred by needs of more performance into smaller packages at lower costs. But the trend of electronics miniaturization challenges board assembly materials, processes, and reliability. Semiconductor device and integrated circuit technology, coupled with its associated electronic packaging, forms the backbone of high-performance miniaturized electronic systems. However, as size decreases and functionalization increases in the modern electronics further size reduction is getting difficult; below a size limit the signal reliability and device performance deteriorate. Hence miniaturization of siliconbased electronics has limitations. On this background the Road Map for Semiconductor Industry (ITRS) suggests since 2011 alternative technologies, designated as More than Moore; being one of them based on carbon (carbon nanotubes (CNTs) and graphene) [1]. CNTs with their unique performance and three dimensionality at the nano-scale have been regarded as promising elements for miniaturized electronics [2]. CNTs are tubular in geometry and possess a unique set of properties, including ballistic electron transportation and a huge current caring capacity, which make them of great interest for future microelectronics [2]. Indeed CNTs might have a key role in the miniaturization of Non Volatile Ferroelectric Random Access Memories (NVFeRAM). Moving from a traditional two dimensional (2D) design (as is the case of thin films) to a 3D structure (based on a tridimensional arrangement of unidimensional structures) will result in the high reliability and sensing of the signals due to the large contribution from the bottom electrode. One way to achieve this 3D design is by using CNTs. Ferroelectrics (FE) are spontaneously polarized and can have high dielectric constants and interesting pyroelectric, piezoelectric, and electrooptic properties, being a key application of FE electronic memories. However, combining CNTs with FE functional oxides is challenging. It starts with materials compatibility, since crystallization temperature of FE and oxidation temperature of CNTs may overlap. In this case low temperature processing of FE is fundamental. Within this context in this work a systematic study on the fabrication of CNTs - FE structures using low cost low temperature methods was carried out. The FE under study are comprised of lead zirconate titanate (Pb1-xZrxTiO3, PZT), barium titanate (BaTiO3, BT) and bismuth ferrite (BiFeO3, BFO). The various aspects related to the fabrication, such as effect on thermal stability of MWCNTs, FE phase formation in presence of MWCNTs and interfaces between the CNTs/FE are addressed in this work. The ferroelectric response locally measured by Piezoresponse Force Microscopy (PFM) clearly evidenced that even at low processing temperatures FE on CNTs retain its ferroelectric nature. The work started by verifying the thermal decomposition behavior under different conditions of the multiwall CNTs (MWCNTs) used in this work. It was verified that purified MWCNTs are stable up to 420 ºC in air, as no weight loss occurs under non isothermal conditions, but morphology changes were observed for isothermal conditions at 400 ºC by Raman spectroscopy and Transmission Electron Microscopy (TEM). In oxygen-rich atmosphere MWCNTs started to oxidized at 200 ºC. However in argon-rich one and under a high heating rate MWCNTs remain stable up to 1300 ºC with a minimum sublimation. The activation energy for the decomposition of MWCNTs in air was calculated to lie between 80 and 108 kJ/mol. These results are relevant for the fabrication of MWCNTs – FE structures. Indeed we demonstrate that PZT can be deposited by sol gel at low temperatures on MWCNTs. And particularly interesting we prove that MWCNTs decrease the temperature and time for formation of PZT by ~100 ºC commensurate with a decrease in activation energy from 68±15 kJ/mol to 27±2 kJ/mol. As a consequence, monophasic PZT was obtained at 575 ºC for MWCNTs - PZT whereas for pure PZT traces of pyrochlore were still present at 650 ºC, where PZT phase formed due to homogeneous nucleation. The piezoelectric nature of MWCNTs - PZT synthesised at 500 ºC for 1 h was proved by PFM. In the continuation of this work we developed a low cost methodology of coating MWCNTs using a hybrid sol-gel / hydrothermal method. In this case the FE used as a proof of concept was BT. BT is a well-known lead free perovskite used in many microelectronic applications. However, synthesis by solid state reaction is typically performed around 1100 to 1300 ºC what jeopardizes the combination with MWCNTs. We also illustrate the ineffectiveness of conventional hydrothermal synthesis in this process due the formation of carbonates, namely BaCO3. The grown MWCNTs - BT structures are ferroelectric and exhibit an electromechanical response (15 pm/V). These results have broad implications since this strategy can also be extended to other compounds of materials with high crystallization temperatures. In addition the coverage of MWCNTs with FE can be optimized, in this case with non covalent functionalization of the tubes, namely with sodium dodecyl sulfate (SDS). MWCNTs were used as templates to grow, in this case single phase multiferroic BFO nanorods. This work shows that the use of nitric solvent results in severe damages of the MWCNTs layers that results in the early oxidation of the tubes during the annealing treatment. It was also observed that the use of nitric solvent results in the partial filling of MWCNTs with BFO due to the low surface tension (<119 mN/m) of the nitric solution. The opening of the caps and filling of the tubes occurs simultaneously during the refluxing step. Furthermore we verified that MWCNTs have a critical role in the fabrication of monophasic BFO; i.e. the oxidation of CNTs during the annealing process causes an oxygen deficient atmosphere that restrains the formation of Bi2O3 and monophasic BFO can be obtained. The morphology of the obtained BFO nano structures indicates that MWCNTs act as template to grow 1D structure of BFO. Magnetic measurements on these BFO nanostructures revealed a week ferromagnetic hysteresis loop with a coercive field of 956 Oe at 5 K. We also exploited the possible use of vertically-aligned multiwall carbon nanotubes (VA-MWCNTs) as bottom electrodes for microelectronics, for example for memory applications. As a proof of concept BiFeO3 (BFO) films were in-situ deposited on the surface of VA-MWCNTs by RF (Radio Frequency) magnetron sputtering. For in situ deposition temperature of 400 ºC and deposition time up to 2 h, BFO films cover the VA-MWCNTs and no damage occurs either in the film or MWCNTs. In spite of the macroscopic lossy polarization behaviour, the ferroelectric nature, domain structure and switching of these conformal BFO films was verified by PFM. A week ferromagnetic ordering loop was proved for BFO films on VA-MWCNTs having a coercive field of 700 Oe. Our systematic work is a significant step forward in the development of 3D memory cells; it clearly demonstrates that CNTs can be combined with FE oxides and can be used, for example, as the next 3D generation of FERAMs, not excluding however other different applications in microelectronics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of the study was to investigate the effect of a 16 session stickhandling and puck control (SPC) off-ice training intervention on SPC skills and wrist shot performance variables. Eighteen female collegiate ice hockey players participated in a crossover design training intervention, whereby players were randomly assigned to two groups. Each group completed 16 SPC training sessions in two conditions [normal vision (NV) and restricted vision (RV)]. Measures obtained after the training intervention revealed significant improvements in SPC skills and wrist shot accuracy. Order of training condition did not reach significance, meaning that SPC improvement occurred as a result of total training volume as opposed to order of training condition. However, overall changes in the RV-NV condition revealed consistently higher effect sizes, meaning a greater improvement in performance. Therefore, support can be provided for this technical approach to SPC training and an alternative method of challenging SPC skills.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we report the in-plane and cross-plane measurements of the thermal diffusivity of double epitaxial layers of n-type GaAs doped with various concentrations of Si and a p-type Be-doped GaAs layer grown on a GaAs substrate by the molecular beam epitaxial method, using the laser-induced nondestructive photothermal deflection technique. The thermal diffusivity value is evaluated from the slope of the graph of the phase of the photothermal deflection signal as a function of pump-probe offset. Analysis of the data shows that the cross-plane thermal diffusivity is less than that of the in-plane thermal diffusivity. It is also seen that the doping concentration has a great influence on the thermal diffusivity value. Measurement of p-type Be-doped samples shows that the nature of the dopant also influences the effective thermal diffusivity value. The results are interpreted in terms of a phonon-assisted heat transfer mechanism and the various scattering process involved in the propagation of phonons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we report the in-plane and cross-plane measurements of the thermal diffusivity of double epitaxial layers of n-type GaAs doped with various concentrations of Si and a p-type Be-doped GaAs layer grown on a GaAs substrate by the molecular beam epitaxial method, using the laser-induced nondestructive photothermal deflection technique. The thermal diffusivity value is evaluated from the slope of the graph of the phase of the photothermal deflection signal as a function of pump-probe offset. Analysis of the data shows that the cross-plane thermal diffusivity is less than that of the in-plane thermal diffusivity. It is also seen that the doping concentration has a great influence on the thermal diffusivity value. Measurement of p-type Be-doped samples shows that the nature of the dopant also influences the effective thermal diffusivity value. The results are interpreted in terms of a phonon-assisted heat transfer mechanism and the various scattering process involved in the propagation of phonons