996 resultados para NITROGEN-SOURCE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrogen assimilation plays a vital role in plant metabolism. Assimilation of nitrate, the primary source of nitrogen in soil, is linked to the generation of the redox signal nitric oxide (NO). An important mechanism by which NO regulates plant development and stress responses is through S-nitrosylation, that is, covalent attachment of NO to cysteine residues to form S-nitrosothiols (SNO). Despite the importance of nitrogen assimilation and NO signalling, it remains largely unknown how these pathways are interconnected. Here we show that SNO signalling suppresses both nitrate uptake and reduction by transporters and reductases, respectively, to fine tune nitrate homeostasis. Moreover, NO derived from nitrate assimilation suppresses the redox enzyme S-nitrosoglutathione Reductase 1 (GSNOR1) by S-nitrosylation, preventing scavenging of S-nitrosoglutathione, a major cellular bio-reservoir of NO. Hence, our data demonstrates that (S)NO controls its own generation and scavenging by modulating nitrate assimilation and GSNOR1 activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects were assessed of two energy sources in concentrate (ground grain corn vs. citrus pulp) and two nitrogen sources (soybean meal vs. urea) on rumen metabolism in four buffaloes and four zebu cattle (Nellore) with rumen cannula and fed in a 4 × 4 Latin square design with feeds containing 60% sugar cane. Energy supplements had no effect on the rumen ammonia concentration in cattle, but ground grain corn promoted higher ammonia level than citrus pulp in buffalo. Urea produced higher ammonia level than soybean meal in both animal species. On average, the buffaloes maintained a lower rumen ammonia concentration (11.7 mg/dL) than the cattle (14.5 mg/dL). Buffaloes had lower production of acetic acid than cattle (58.7 vs. 61.6 mol/100 mol) and higher of propionic acid (27.4 vs. 23.6 mol/100 mol). There was no difference in the butyric acid production between the buffaloes (13.6 mol/100 mol) and cattle (14.8 mol/100 mol) and neither in the total volatile fatty acids concentration (82.5 vs. 83.6 mM, respectively). The energy or nitrogen sources had no effect on rumen protozoa count in either animal species. The zebu cattle had higher rumen protozoa population (8.8 × 10(5)/mL) than the buffaloes (6.1 × 10(5)/mL). The rumen protozoa population differed between the animal species, except for Dasytricha and Charonina. The buffaloes had a lower Entodinium population than the cattle (61.0 vs 84.9%, respectively) and a greater percentage of species belonging to the Diplodiniinae subfamily than the cattle (28.6 vs. 1.4%, respectively). In cattle, ground corn is a better energy source than citrus pulp for use by Entodinium and Diplodiniinae. In the buffaloes, the Entodinium are favored by urea and Diplodiniinae species by soybean meal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biogeochemical processes affecting the transport and cycling of terrestrial organic carbon in coastal and transition areas are still not fully understood One means of distinguishing between the sources of organic materials contributing to particulate organic matter (POM) in Babitonga Bay waters and sediments is by the direct measurement of delta(13)C of dissolved inorganic carbon (DIC) and delta(13)C and delta(15)N in the organic constituents. An isotopic survey was taken from samples collected in the Bay in late spring of 2004. The results indicate that the delta(13)C and delta(15)N compositions of OM varied from -21.7 parts per thousand to -26 2 parts per thousand. and from + 9 2 parts per thousand. to -0 1 parts per thousand, respectively. delta(13)C from DIC ranges from +0.04 parts per thousand to -12.7 parts per thousand The difference in the isotope compositions enables the determination of three distinct end-members terrestrial, marine and urban Moreover, the evaluation of source contribution to the particulate organic matter (POM) in the Bay, enables assessment of the anthropogenic impact. Comparing the depleted values of delta(13)C(DIC) and delta(13)C(POC) it is possible to further understand the carbon dynamic within Babitonga Bay (C) 2010 Elsevier BV All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Upland rice plants, cultivar `IAC 202,` were grown in nutrient solution until full tillering. Treatments consisted of ammonium nitrate (AN) or urea (UR) as nitrogen (N) source plus molybdenum (Mo) and/or nickel (Ni): AN + Mo + Ni, AN + Mo - Ni, AN - Mo + Ni, UR + Mo + Ni, UR + Mo - Ni, and UR - Mo + Ni. The experiment was carried out to better understand the effect of these treatments on dry-matter yield, chlorophyll, net photosynthesis rate, nitrate (NO3 --N), total N, in vitro activities of urease and nitrate reductase (NR), and Mo and Ni concentrations. In UR-grown plants, Mo and Ni addition increased yield of dry matter. Regardless of the N source, chlorophyll concentration and net photosynthesis rate were reduced when Mo or Ni were omitted, although not always significantly. The omission of either Mo or Ni led to a decrease in urease activity, independent of N source. Nitrate reductase activity increased in nutrient solutions without Mo, although NO3 --N increased. There was not a consistent variation in total N concentration. Molybdenum and Ni concentration in roots and shoots were influenced by their supply in the nutrient solution. Molybdenum concentration was not influenced by N sources, whereas Ni content in both root and shoots was greater in ammonium nitrate-grown plants. In conclusion, it can be hypothesized that there is a relationship between Mo and Ni acting on photosynthesis, although is an indirect one. This is the first evidence for a beneficial effect of Mo and Ni interaction on plant growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biological nitrogen fixation (BNF) constitutes a valuable source of this nutrient for the common bean Phaseolus vulgaris L and cowpea Vigna unguiculata (L.) Walp., being its avaibility affected by mineral N in the soil solution. The objectives of this work were to evaluate the effects of nitrogen rate, as urea, on symbiotic fixation of N(2) in common bean and cowpea plants, using the isotopic technique, and quantifying the relative contributions of N sources symbiotic N(2) fixation, soil native nitrogen and urea N on the growth of the common bean and cowpea. Non nodulating soybean plants were used as standard. The research was carried out in greenhouse, using pots with 5 kg of soil from a Typic Haplustox (Dystrophic Red Yellow Latosol). The experimental design was completely randomized blocks, with 30 treatments and three replications, arranged in 5x3x2 factorial outline. The treatments consisted of five N rates: 2, 15, 30, 45 and 60 mg N kg(-1) soil; three sampling times: 23, 40 and 76 days after sowing (DAS) and two crops: common bean and cowpea. The BNF decreased with increase N rates, varying from 81.5% to 55.6% for cowpea, and from 71.9% to 55.1% for common bean. The symbiotic N(2) fixation in cowpea can substitute totally the nitrogen fertilization. The nitrogen absorption from soil is not affected by nitrogen fertilizer rate. The N recovery from fertilizer at 76 DAS was of 60.7% by common bean, and 57.1% by cowpea. The symbiotic association in common bean needs the application of a starting dose (40 kg N ha(-1)) for economically acceptable yields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nutrient dynamics in tropical soils sustaining forage grasses are still poorly understood. We conducted a study to evaluate the effect of combined N and S fertilizer rates on the growth of `Marandu` palisade grass [Brachiaria brizantha (Hochst. ex A. Rich.) Stapf], uptake of these elements from the soil by plants, soil organic matter concentration, soil pH, and the mineral and organic fractions of N and S in an Entisol. Combinations of five N rates (0, 100, 200, 300, and 400 g N m(-3)) with five S rates (0, 10, 20, 30, and 40 g S m(-3)) were evaluated in a partial 5 x 5 factorial in a pot experiment, with and without plants. Nitrogen and S were supplied as NH(4)NO(3) and CaSO(4)center dot 2H(2)O, respectively. The N addition in excess did not enhance the palisade grass production due to low plant-available Sin the soil. The supply of low rates of S with N greatly improved the overall N uptake efficiency by the forage plant. The contents of total N, NO(3)(-)-N, and NH(4)(+)-N in the soil varied with N rate and with N uptake by the plants. The association of palisade grass with S fertilization increased the ester-bonded S fraction in the soil. The results suggest that soil residual S could be a potential source of S for plants. Proper N and S fertilizer rates promoted increased grass production due to increased uptake of these nutrients and the dynamics of the organic N and S fractions and mineral fractions in this tropical soil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The postharvest development of crown rot of bananas depends notably on the fruit susceptibility to this disease at harvest. It has been shown that fruit susceptibility to crown rot is variable and it was suggested that this depends on environmental preharvest factors. However, little is known about the preharvest factors influencing this susceptibility. The aim of this work was to evaluate the extent to which fruit filling characteristics during growth and the fruit development stage influence the banana susceptibility to crown rot. This involved evaluating the influence of (a) the fruit position at different levels of the banana bunch (hands) and (b) changing the source-sink ratio (So-Si ratio), on the fruit susceptibility to crown rot. The fruit susceptibility was determined by measuring the internal necrotic surface (INS) after artificial inoculation of Colletotrichum musae. A linear correlation (r = -0.95) was found between the hand position on the bunch and the INS. The So-Si ratio was found to influence the pomological characteristics of the fruits and their susceptibility to crown rot. Fruits of bunches from which six hands were removed (two hands remaining on the bunch) proved to be significantly less susceptible to crown rot (INS = 138.3 mm 2) than those from bunches with eight hands (INS = 237.9 mm 2). The banana susceptibility to crown rot is thus likely to be influenced by the fruit development stage and filling characteristics. The present results highlight the importance of standardising hand sampling on a bunch when testing fruit susceptibility to crown rot. They also show that hand removal in the field has advantages in the context of integrated pest management, making it possible to reduce fruit susceptibility to crown rot while increasing fruit size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Xylem sap from woody species in the wet/dry tropics of northern Australia was analyzed for N compounds. At the peak of the dry season, arginine was the main N compound in sap of most species of woodlands and deciduous monsoon forest. In the wet season, a marked change occurred with amides becoming the main sap N constituents of most species. Species from an evergreen monsoon forest, with a permanent water source, transported amides in the dry season. In the dry season, nitrate accounted for 7 and 12% of total xylem sap N in species of deciduous and evergreen monsoon forests, respectively In the wet season, the proportion of N present as nitrate increased to 22% in deciduous monsoon forest species. These results suggest that N is taken up and assimilated mainly in the wet season and that this newly assimilated N is mostly transported as amide-N (woodland species, monsoon forest species) and nitrate (monsoon forest species). Arginine is the form in which stored N is remobilized and transported by woodland and deciduous monsoon forest species in the dry season. Several proteins, which may represent bark storage proteins, were detected in inner bark tissue from a range of trees in the dry season, indicating that, although N uptake appears to be limited in the dry season, the many tree and shrub species that produce flowers, fruit or leaves in the dry season use stored N to support growth. Nitrogen characteristics of the studied species are discussed in relation to the tropical environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrogen relations of natural and disturbed tropical plant communities in northern Australia (Kakadu National Park) were studied. Plant and soil N characteristics suggested that differences in N source utilisation occur at community and species level. Leaf and xylem sap N concentrations of plants in different communities were correlated with the availability of inorganic soil N (NH4+ and NO3-). In general, rates of leaf NO3- assimilation were low. Even in communities with a higher N status, including deciduous monsoon forest, disturbed wetland, and a revegetated mine waste rock dump, levels of leaf nitrate reductase, xylem and leaf NO3 levels were considerably lower than those that have been reported for eutrophic communities. Although NO3- assimilation in escarpment and eucalypt woodlands, and wetland, was generally low, within these communities there was a suite of species that exhibited a greater capacity for NO3- assimilation. These high-NO3- species were mainly annuals, resprouting herbs or deciduous trees that had leaves with high N contents. Ficus, a high-NO3- species, was associated with soil exhibiting higher rates of net mineralisation and net nitrification. Low-NO3- species were evergreen perennials with low leaf N concentrations. A third group of plants, which assimilated NO3- (albeit at lower rates than the high-NO3- species), and had high-N leaves, were leguminous species. Acacia species, common in woodlands, had the highest leaf N contents of all woody species. Acacia species appeared to have the greatest potential to utilise the entire spectrum of available N sources. This versatility in N source utilisation may be important in relation to their high tissue N status and comparatively short life cycle. Differences in N utilisation are discussed in the context of species life strategies and mycorrhizal associations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relative contribution of dissolved nitrogen (ammonium and dissolved free amino acids DFAAs) to the nitrogen budget of the reef-building coral Pocillopora damicornis was assessed for colonies growing on control and ammonium-enriched reefs at One Tree Island (southern Great Barrier Reef) during the ENCORE (Enrichment of Nutrient on Coral Reef; 1993 to 1996) project. P. damicornis acquired ammonium at rates of between 5.1 and 91.8 nmol N cm(-2) h(-1) which were not affected by nutrient treatment except in the case of one morph. In this case, uptake rates decreased from 80.5 to 42.8 nmol cm(-2) h(-1) (P < 0.05) on exposure to elevated ammonium over 12 mo. The presence or absence of light during measurement did not influence the uptake of ammonium ions. Nitrogen budgets revealed that the uptake of ammonium from concentrations of 0.11 to 0.13 mu M could completely satisfy the demand of growing P. damicornis for new nitrogen. P. damicornis also took up DFAAs at rates ranging from 4.9 to 9.8 nmol N cm(-2) h(-1). These rates were higher in the dark than in the light (9.0 vs 5.1 nmol m(-2) h(-1), P < 0.001). Uptake rates were highest for the amino acids serine, arginine and alanine, and lowest for tyrosine. DFAA concentrations within the ENCORE microatolls that received ammonium were undetectable, whereas they ranged up to 100 nM within the control microatolls. The contribution of DFAAs to the nitrogen budget of P. damicornis constituted only a small fraction of the nitrogen potentially contributed by ammonium under field conditions. Even at the highest field concentrations measured during this study, DFAAs could contribute only similar or equal to 11.3% of the nitrogen demand of P. damicornis. This contribution, however, may be an important source of nitrogen when other sources such as ammonium are scarce or during periods when high concentrations of DFAAs become sporadically available (e.g. cell breakage during fish-grazing).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systems approaches can help to evaluate and improve the agronomic and economic viability of nitrogen application in the frequently water-limited environments. This requires a sound understanding of crop physiological processes and well tested simulation models. Thus, this experiment on spring wheat aimed to better quantify water x nitrogen effects on wheat by deriving some key crop physiological parameters that have proven useful in simulating crop growth. For spring wheat grown in Northern Australia under four levels of nitrogen (0 to 360 kg N ha(-1)) and either entirely on stored soil moisture or under full irrigation, kernel yields ranged from 343 to 719 g m(-2). Yield increases were strongly associated with increases in kernel number (9150-19950 kernels m(-2)), indicating the sensitivity of this parameter to water and N availability. Total water extraction under a rain shelter was 240 mm with a maximum extraction depth of 1.5 m. A substantial amount of mineral nitrogen available deep in the profile (below 0.9 m) was taken up by the crop. This was the source of nitrogen uptake observed after anthesis. Under dry conditions this late uptake accounted for approximately 50% of total nitrogen uptake and resulted in high (>2%) kernel nitrogen percentages even when no nitrogen was applied,Anthesis LAI values under sub-optimal water supply were reduced by 63% and under sub-optimal nitrogen supply by 50%. Radiation use efficiency (RUE) based on total incident short-wave radiation was 1.34 g MJ(-1) and did not differ among treatments. The conservative nature of RUE was the result of the crop reducing leaf area rather than leaf nitrogen content (which would have affected photosynthetic activity) under these moderate levels of nitrogen limitation. The transpiration efficiency coefficient was also conservative and averaged 4.7 Pa in the dry treatments. Kernel nitrogen percentage varied from 2.08 to 2.42%. The study provides a data set and a basis to consider ways to improve simulation capabilities of water and nitrogen effects on spring wheat. (C) 1997 Elsevier Science B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retention of green leaf area in grain sorghum under post-anthesis drought, known as stay-green, is associated with greater biomass production, lodging resistance and yield. The stay-green phenomenon can be examined at a cell, leaf, or whole plant level. At a cell level, the retention of chloroplast proteins such as LHCP2, OEC33 and Rubisco until late in senescence has been reported in sorghum containing the KS19 source of stay-green, indicating that photosynthesis may be maintained for longer during senescence in these genotypes. At a leaf level, longevity of photosynthetic apparatus is intimately related to nitrogen (N) status. At a whole plant level, stay-green can be viewed as a consequence of the balance between N demand by the grain and N supply during grain filling. To examine some of these concepts, nine hybrids varying in the B35 and KS19 sources of stay-green were grown under a postanthesis water deficit. Genotypic variation in delayed onset and reduced rate of leaf senescence were explained by differences in specific leaf nitrogen (SLN) and N uptake during grain filling. Matching N supply from age-related senescence and N uptake during grain tilling with grain N demand found that the shortfall in N supply for grain filling was greater in the senescent than stay-green hybrids, resulting in more accelerated leaf senescence in the former. We hypothesise that increased N uptake by stay-green hybrids is a result of greater biomass accumulation during grain filling in response to increased sink demand (higher grain numbers) which, in turn, is the result of increased radiation use efficiency and transpiration efficiency due to higher SLN. Delayed leaf senescence resulting from higher SLN should, in turn, allow snore carbon and nitrogen to be allocated to the roots of stay-green hybrids during grain filling, thereby maintaining a greater capacity to extract N from the soil compared with senescent hybrids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of nitrate, ammonium, and culture medium pH on shoot organogenesis in Nicotiana tabacum zz100 leaf discs was examined. The nitrogen composition of a basal liquid shoot induction medium (SIM) containing 39.4 mM NO3- and 20.6 mM NH4+ was altered whilst maintaining the overall ionic balance with Na+ and Cl- ions. Omission of total nitrogen and nitrate, but not ammonium, from SIM prevented the initiation and formation of shoots. When nitrate was used as the sole source of nitrogen, a high frequency of explants initiated and produced leafy shoots. However, the numbers of shoots produced were significantly fewer than the control SIM. Buffering nitrate-only media with the organic acid 2[N-morpholinol]thanesulphonic acid (MES) could not compensate for the omission of ammonium. Ammonium used as the sole source of nitrogen appeared to have a negative effect on explant growth and morphogenesis, with a significant lowering of media pH. Buffering ammonium-only media with MES stabilized pH and allowed a low frequency of explants to initiate shoot meristems. However, no further differentiation into leafy shoots was observed. The amount of available nitrogen appears to be less important than the ratio between nitrate and ammonium. Shoot formation was achieved with a wide range of ratios, but media containing 40 mM nitrate and 20 mM ammonium (70:30) produced the greatest number of shoots per explant. Results from this study indicate a synergistic effect between ammonium and nitrate on shoot organogenesis independent of culture medium pH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eight species of ectomycorrhizal (ECM) fungi in the genera Amanita. Gymnoboletus, Lactarius, and Russula were isolated from subtropical plant communities in eastem Australia. Two species were isolated from each of rainforest, Nothofagus forest, Eucalyptus forest, and Eucalyptus dominated wallum (heath) forest. These communities differ strongly in their soluble soil nitrogen (N) composition. The ability of the fungi to use inorganic (nitrate, ammonium) and organic (amide, peptide, protein) nitrogen sources was determined. As the fungi did not grow in liquid culture, a 'floating culture' technique was devised that allows hyphal growth on a screen floating on liquid medium. With some exceptions, fungal biomass production in floating culture closely reflected fungal growth on solid media assessed by total colony glucosamine content. Most isolates grown in floating culture had similar glucosamine concentrations on all N sources, with isolate specific concentrations ranging from 6 to 12 mug glucosamine g(-1) DW. However, Russula spp. had up to 1.7-fold higher glucosamine concentrations when growing with glutamine or ammonium compared to nitrate, glutathione or protein. Floating cultures supplied with 0.5, 1.5. 4.5, or 10 mm N mostly produced greatest biomass with 4.5 mM N. In vitro nitrate reductase activity (NRA) ranged from very low (0.03 mumol NO2- g(-1) fw h(-1)) in Russula sp. (wallum) to high (2.16 mumol NO2- g(-1) fw h(-1)) in Gymnoboletus sp. (rainforest) and mirrored the fungi's ability to use nitrate as a N source. All Russula spp. (wallum, Nothofagus and Eucalyptus forests), Lactarills sp, (rainforest) and.4manita sp. (wallum) utilized ammonium and glutamine but had little ability to use other N sources. In contrast,Amanita species (Nothofagus and Eucalyptus forests) grew on all N sources but produced most biomass with ammonium and glutamine. Only Gymnoboletus sp. (rainforest) showed similar growth with nitrate and ammonium as N sources. Fungal N source use was not associated with taxonomic groups, but is discussed in the context of soil N sources in the different habitats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The family of lemnacae colloquially known as duckweed contains the world's smallest species of flowering plants (macrophytes). Aquatic and free-floating, their most striking qualities are a capacity for explosive reproduction and an almost complete lack of fibrous material. They are widely used for reducing chemical loading in facultative sewage lagoons, but their greatest potential lies in their ability to produce large quantities of protein rich biomass, suitable for feeding to a wide range of animals, including fish, poultry and cattle. Despite these qualities there are numerous impediments to these plants being incorporated into western farming systems. Large genetically determined variations in growth in response to nutrients and climate, apparent anti-nutritional factors, concerns about sequestration of heavy metals and possible transference of pathogens raise questions about the safety and usefulness of these plants. A clear understanding of how to address and overcome these impediments needs to be developed before duckweed is widely accepted for nutrient reclamation and as a source of animal feed.