920 resultados para NETWORK MODELS
Resumo:
BACKGROUND: Consumption of red meat has been related to increased risk of several cancers. Cooking methods could modify the magnitude of this association, as production of chemicals depends on the temperature and duration of cooking. METHODS: We analyzed data from a network of case-control studies conducted in Italy and Switzerland between 1991 and 2009. The studies included 1465 oral and pharyngeal, 198 nasopharyngeal, 851 laryngeal, 505 esophageal, 230 stomach, 1463 colon, 927 rectal, 326 pancreatic, 3034 breast, 454 endometrial, 1031 ovarian, 1294 prostate and 767 renal cancer cases. Controls included 11 656 patients admitted for acute, non-neoplastic conditions. Odds ratios (ORs) and confidence intervals (CIs) were estimated by multiple logistic regression models, adjusted for known confounding factors. RESULTS: Daily intake of red meat was significantly associated with the risk of cancer of the oral cavity and pharynx (OR for increase of 50 g/day = 1.38; 95% CI: 1.26-1.52), nasopharynx (OR = 1.29; 95% CI: 1.04-1.60), larynx (OR = 1.46; 95% CI: 1.30-1.64), esophagus (OR = 1.46; 95% CI: 1.23-1.72), colon (OR = 1.17; 95% CI: 1.08-1.26), rectum (OR = 1.22; 95% CI:1.11-1.33), pancreas (OR = 1.51; 95% CI: 1.25-1.82), breast (OR = 1.12; 95% CI: 1.04-1.19), endometrium (OR = 1.30; 95% CI: 1.10-1.55) and ovary (OR = 1.29; 95% CI: 1.16-1.43). Fried meat was associated with a higher risk of cancer of oral cavity and pharynx (OR = 2.80; 95% CI: 2.02-3.89) and esophagus (OR = 4.52; 95% CI: 2.50-8.18). Risk of prostate cancer increased for meat cooked by roasting/grilling (OR = 1.31; 95% CI: 1.12-1.54). No heterogeneity according to cooking methods emerged for other cancers. Nonetheless, significant associations with boiled/stewed meat also emerged for cancer of the nasopharynx (OR = 1.97; 95% CI: 1.30-3.00) and stomach (OR = 1.86; 95% CI: 1.20-2.87). CONCLUSIONS: Our analysis confirmed red meat consumption as a risk factor for several cancer sites, with a limited impact of cooking methods. These findings, thus, call for a limitation of its consumption in populations of Western countries.
Resumo:
Functionally relevant large scale brain dynamics operates within the framework imposed by anatomical connectivity and time delays due to finite transmission speeds. To gain insight on the reliability and comparability of large scale brain network simulations, we investigate the effects of variations in the anatomical connectivity. Two different sets of detailed global connectivity structures are explored, the first extracted from the CoCoMac database and rescaled to the spatial extent of the human brain, the second derived from white-matter tractography applied to diffusion spectrum imaging (DSI) for a human subject. We use the combination of graph theoretical measures of the connection matrices and numerical simulations to explicate the importance of both connectivity strength and delays in shaping dynamic behaviour. Our results demonstrate that the brain dynamics derived from the CoCoMac database are more complex and biologically more realistic than the one based on the DSI database. We propose that the reason for this difference is the absence of directed weights in the DSI connectivity matrix.
Resumo:
BACKGROUND: Qualitative frameworks, especially those based on the logical discrete formalism, are increasingly used to model regulatory and signalling networks. A major advantage of these frameworks is that they do not require precise quantitative data, and that they are well-suited for studies of large networks. While numerous groups have developed specific computational tools that provide original methods to analyse qualitative models, a standard format to exchange qualitative models has been missing. RESULTS: We present the Systems Biology Markup Language (SBML) Qualitative Models Package ("qual"), an extension of the SBML Level 3 standard designed for computer representation of qualitative models of biological networks. We demonstrate the interoperability of models via SBML qual through the analysis of a specific signalling network by three independent software tools. Furthermore, the collective effort to define the SBML qual format paved the way for the development of LogicalModel, an open-source model library, which will facilitate the adoption of the format as well as the collaborative development of algorithms to analyse qualitative models. CONCLUSIONS: SBML qual allows the exchange of qualitative models among a number of complementary software tools. SBML qual has the potential to promote collaborative work on the development of novel computational approaches, as well as on the specification and the analysis of comprehensive qualitative models of regulatory and signalling networks.
Resumo:
The complex relationship between structural and functional connectivity, as measured by noninvasive imaging of the human brain, poses many unresolved challenges and open questions. Here, we apply analytic measures of network communication to the structural connectivity of the human brain and explore the capacity of these measures to predict resting-state functional connectivity across three independently acquired datasets. We focus on the layout of shortest paths across the network and on two communication measures-search information and path transitivity-which account for how these paths are embedded in the rest of the network. Search information is an existing measure of information needed to access or trace shortest paths; we introduce path transitivity to measure the density of local detours along the shortest path. We find that both search information and path transitivity predict the strength of functional connectivity among both connected and unconnected node pairs. They do so at levels that match or significantly exceed path length measures, Euclidean distance, as well as computational models of neural dynamics. This capacity suggests that dynamic couplings due to interactions among neural elements in brain networks are substantially influenced by the broader network context adjacent to the shortest communication pathways.
Resumo:
BACKGROUND: Citrus fruit has shown a favorable effect against various cancers. To better understand their role in cancer risk, we analyzed data from a series of case-control studies conducted in Italy and Switzerland. PATIENTS AND METHODS: The studies included 955 patients with oral and pharyngeal cancer, 395 with esophageal, 999 with stomach, 3,634 with large bowel, 527 with laryngeal, 2,900 with breast, 454 with endometrial, 1,031 with ovarian, 1,294 with prostate, and 767 with renal cell cancer. All cancers were incident and histologically confirmed. Controls were admitted to the same network of hospitals for acute, nonneoplastic conditions. Odds ratios (OR) were estimated by multiple logistic regression models, including terms for major identified confounding factors for each cancer site, and energy intake. RESULTS: The ORs for the highest versus lowest category of citrus fruit consumption were 0.47 (95% confidence interval, CI, 0.36-0.61) for oral and pharyngeal, 0.42 (95% CI, 0.25-0.70) for esophageal, 0.69 (95% CI, 0.52-0.92) for stomach, 0.82 (95% CI, 0.72-0.93) for colorectal, and 0.55 (95% CI, 0.37-0.83) for laryngeal cancer. No consistent association was found with breast, endometrial, ovarian, prostate, and renal cell cancer. CONCLUSIONS: Our findings indicate that citrus fruit has a protective role against cancers of the digestive and upper respiratory tract.
Resumo:
We present an exact solution for the order parameters that characterize the stationary behavior of a population of Kuramotos phase oscillators under random external fields [Y. Kuramoto, in International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Physics, Vol. 39 (Springer, Berlin, 1975), p. 420]. From these results it is possible to generate the phase diagram of models with an arbitrary distribution of random frequencies and random fields.
Resumo:
The paper presents a novel method for monitoring network optimisation, based on a recent machine learning technique known as support vector machine. It is problem-oriented in the sense that it directly answers the question of whether the advised spatial location is important for the classification model. The method can be used to increase the accuracy of classification models by taking a small number of additional measurements. Traditionally, network optimisation is performed by means of the analysis of the kriging variances. The comparison of the method with the traditional approach is presented on a real case study with climate data.
Resumo:
How have changes in communications technology affected the way that misinformation spreads through a population and persists? To what extent do differences in the architecture of social networks affect the spread of misinformation, relative to the rates and rules by which individuals transmit or eliminate different pieces of information (cultural traits)? Here, we use analytical models and individual-based simulations to study how a 'cultural load' of misinformation can be maintained in a population under a balance between social transmission and selective elimination of cultural traits with low intrinsic value. While considerable research has explored how network architecture affects percolation processes, we find that the relative rates at which individuals transmit or eliminate traits can have much more profound impacts on the cultural load than differences in network architecture. In particular, the cultural load is insensitive to correlations between an individual's network degree and rate of elimination when these quantities vary among individuals. Taken together, these results suggest that changes in communications technology may have influenced cultural evolution more strongly through changes in the amount of information flow, rather than the details of who is connected to whom.
Resumo:
Regulatory gene networks contain generic modules, like those involving feedback loops, which are essential for the regulation of many biological functions (Guido et al. in Nature 439:856-860, 2006). We consider a class of self-regulated genes which are the building blocks of many regulatory gene networks, and study the steady-state distribution of the associated Gillespie algorithm by providing efficient numerical algorithms. We also study a regulatory gene network of interest in gene therapy, using mean-field models with time delays. Convergence of the related time-nonhomogeneous Markov chain is established for a class of linear catalytic networks with feedback loops.
Resumo:
The choice network revenue management (RM) model incorporates customer purchase behavioras customers purchasing products with certain probabilities that are a function of the offeredassortment of products, and is the appropriate model for airline and hotel network revenuemanagement, dynamic sales of bundles, and dynamic assortment optimization. The underlyingstochastic dynamic program is intractable and even its certainty-equivalence approximation, inthe form of a linear program called Choice Deterministic Linear Program (CDLP) is difficultto solve in most cases. The separation problem for CDLP is NP-complete for MNL with justtwo segments when their consideration sets overlap; the affine approximation of the dynamicprogram is NP-complete for even a single-segment MNL. This is in contrast to the independentclass(perfect-segmentation) case where even the piecewise-linear approximation has been shownto be tractable. In this paper we investigate the piecewise-linear approximation for network RMunder a general discrete-choice model of demand. We show that the gap between the CDLP andthe piecewise-linear bounds is within a factor of at most 2. We then show that the piecewiselinearapproximation is polynomially-time solvable for a fixed consideration set size, bringing itinto the realm of tractability for small consideration sets; small consideration sets are a reasonablemodeling tradeoff in many practical applications. Our solution relies on showing that forany discrete-choice model the separation problem for the linear program of the piecewise-linearapproximation can be solved exactly by a Lagrangian relaxation. We give modeling extensionsand show by numerical experiments the improvements from using piecewise-linear approximationfunctions.
Resumo:
The capacity to interact socially and share information underlies the success of many animal species, humans included. Researchers of many fields have emphasized the evo¬lutionary significance of how patterns of connections between individuals, or the social networks, and learning abilities affect the information obtained by animal societies. To date, studies have focused on the dynamics either of social networks, or of the spread of information. The present work aims to study them together. We make use of mathematical and computational models to study the dynamics of networks, where social learning and information sharing affect the structure of the population the individuals belong to. The number and strength of the relationships between individuals, in turn, impact the accessibility and the diffusion of the shared information. Moreover, we inves¬tigate how different strategies in the evaluation and choice of interacting partners impact the processes of knowledge acquisition and social structure rearrangement. First, we look at how different evaluations of social interactions affect the availability of the information and the network topology. We compare a first case, where individuals evaluate social exchanges by the amount of information that can be shared by the partner, with a second case, where they evaluate interactions by considering their partners' social status. We show that, even if both strategies take into account the knowledge endowments of the partners, they have very different effects on the system. In particular, we find that the first case generally enables individuals to accumulate higher amounts of information, thanks to the more efficient patterns of social connections they are able to build. Then, we study the effects that homophily, or the tendency to interact with similar partners, has on knowledge accumulation and social structure. We compare the case where individuals who know the same information are more likely to learn socially from each other, to the opposite case, where individuals who know different information are instead more likely to learn socially from each other. We find that it is not trivial to claim which strategy is better than the other. Depending on the possibility of forgetting information, the way new social partners can be chosen, and the population size, we delineate the conditions for which each strategy allows accumulating more information, or in a faster way For these conditions, we also discuss the topological characteristics of the resulting social structure, relating them to the information dynamics outcome. In conclusion, this work paves the road for modeling the joint dynamics of the spread of information among individuals and their social interactions. It also provides a formal framework to study jointly the effects of different strategies in the choice of partners on social structure, and how they favor the accumulation of knowledge in the population. - La capacité d'interagir socialement et de partager des informations est à la base de la réussite de nombreuses espèces animales, y compris les humains. Les chercheurs de nombreux domaines ont souligné l'importance évolutive de la façon dont les modes de connexions entre individus, ou réseaux sociaux et les capacités d'apprentissage affectent les informations obtenues par les sociétés animales. À ce jour, les études se sont concentrées sur la dynamique soit des réseaux sociaux, soit de la diffusion de l'information. Le présent travail a pour but de les étudier ensemble. Nous utilisons des modèles mathématiques et informatiques pour étudier la dynamique des réseaux, où l'apprentissage social et le partage d'information affectent la structure de la population à laquelle les individus appartiennent. Le nombre et la solidité des relations entre les individus ont à leurs tours un impact sur l'accessibilité et la diffusion de l'informa¬tion partagée. Par ailleurs, nous étudions comment les différentes stratégies d'évaluation et de choix des partenaires d'interaction ont une incidence sur les processus d'acquisition des connaissances ainsi que le réarrangement de la structure sociale. Tout d'abord, nous examinons comment des évaluations différentes des interactions sociales influent sur la disponibilité de l'information ainsi que sur la topologie du réseau. Nous comparons un premier cas, où les individus évaluent les échanges sociaux par la quantité d'information qui peut être partagée par le partenaire, avec un second cas, où ils évaluent les interactions en tenant compte du statut social de leurs partenaires. Nous montrons que, même si les deux stratégies prennent en compte le montant de connaissances des partenaires, elles ont des effets très différents sur le système. En particulier, nous constatons que le premier cas permet généralement aux individus d'accumuler de plus grandes quantités d'information, grâce à des modèles de connexions sociales plus efficaces qu'ils sont capables de construire. Ensuite, nous étudions les effets que l'homophilie, ou la tendance à interagir avec des partenaires similaires, a sur l'accumulation des connaissances et la structure sociale. Nous comparons le cas où des personnes qui connaissent les mêmes informations sont plus sus¬ceptibles d'apprendre socialement l'une de l'autre, au cas où les individus qui connaissent des informations différentes sont au contraire plus susceptibles d'apprendre socialement l'un de l'autre. Nous constatons qu'il n'est pas trivial de déterminer quelle stratégie est meilleure que l'autre. En fonction de la possibilité d'oublier l'information, la façon dont les nouveaux partenaires sociaux peuvent être choisis, et la taille de la population, nous déterminons les conditions pour lesquelles chaque stratégie permet d'accumuler plus d'in¬formations, ou d'une manière plus rapide. Pour ces conditions, nous discutons également les caractéristiques topologiques de la structure sociale qui en résulte, les reliant au résultat de la dynamique de l'information. En conclusion, ce travail ouvre la route pour la modélisation de la dynamique conjointe de la diffusion de l'information entre les individus et leurs interactions sociales. Il fournit également un cadre formel pour étudier conjointement les effets de différentes stratégies de choix des partenaires sur la structure sociale et comment elles favorisent l'accumulation de connaissances dans la population.
Resumo:
BACKGROUND: The risk of many cancers is higher in subjects with a family history (FH) of cancer at a concordant site. However, few studies investigated FH of cancer at discordant sites. PATIENTS AND METHODS: This study is based on a network of Italian and Swiss case-control studies on 13 cancer sites conducted between 1991 and 2009, and including more than 12 000 cases and 11 000 controls. We collected information on history of any cancer in first degree relatives, and age at diagnosis. Odds ratios (ORs) for FH were calculated by multiple logistic regression models, adjusted for major confounding factors. RESULTS: All sites showed an excess risk in relation to FH of cancer at the same site. Increased risks were also found for oral and pharyngeal cancer and FH of laryngeal cancer (OR = 3.3), esophageal cancer and FH of oral and pharyngeal cancer (OR = 4.1), breast cancer and FH of colorectal cancer (OR = 1.5) and of hemolymphopoietic cancers (OR = 1.7), ovarian cancer and FH of breast cancer (OR = 2.3), and prostate cancer and FH of bladder cancer (OR = 3.4). For most cancer sites, the association with FH was stronger when the proband was affected at age <60 years. CONCLUSIONS: Our results point to several potential cancer syndromes that appear among close relatives and may indicate the presence of genetic factors influencing multiple cancer sites.
Resumo:
Dendritic cells (DCs) are the most potent antigen-presenting cells in the human lung and are now recognized as crucial initiators of immune responses in general. They are arranged as sentinels in a dense surveillance network inside and below the epithelium of the airways and alveoli, where thet are ideally situated to sample inhaled antigen. DCs are known to play a pivotal role in maintaining the balance between tolerance and active immune response in the respiratory system. It is no surprise that the lungs became a main focus of DC-related investigations as this organ provides a large interface for interactions of inhaled antigens with the human body. During recent years there has been a constantly growing body of lung DC-related publications that draw their data from in vitro models, animal models and human studies. This review focuses on the biology and functions of different DC populations in the lung and highlights the advantages and drawbacks of different models with which to study the role of lung DCs. Furthermore, we present a number of up-to-date visualization techniques to characterize DC-related cell interactions in vitro and/or in vivo.
Resumo:
The final year project came to us as an opportunity to get involved in a topic which has appeared to be attractive during the learning process of majoring in economics: statistics and its application to the analysis of economic data, i.e. econometrics.Moreover, the combination of econometrics and computer science is a very hot topic nowadays, given the Information Technologies boom in the last decades and the consequent exponential increase in the amount of data collected and stored day by day. Data analysts able to deal with Big Data and to find useful results from it are verydemanded in these days and, according to our understanding, the work they do, although sometimes controversial in terms of ethics, is a clear source of value added both for private corporations and the public sector. For these reasons, the essence of this project is the study of a statistical instrument valid for the analysis of large datasets which is directly related to computer science: Partial Correlation Networks.The structure of the project has been determined by our objectives through the development of it. At first, the characteristics of the studied instrument are explained, from the basic ideas up to the features of the model behind it, with the final goal of presenting SPACE model as a tool for estimating interconnections in between elements in large data sets. Afterwards, an illustrated simulation is performed in order to show the power and efficiency of the model presented. And at last, the model is put into practice by analyzing a relatively large data set of real world data, with the objective of assessing whether the proposed statistical instrument is valid and useful when applied to a real multivariate time series. In short, our main goals are to present the model and evaluate if Partial Correlation Network Analysis is an effective, useful instrument and allows finding valuable results from Big Data.As a result, the findings all along this project suggest the Partial Correlation Estimation by Joint Sparse Regression Models approach presented by Peng et al. (2009) to work well under the assumption of sparsity of data. Moreover, partial correlation networks are shown to be a very valid tool to represent cross-sectional interconnections in between elements in large data sets.The scope of this project is however limited, as there are some sections in which deeper analysis would have been appropriate. Considering intertemporal connections in between elements, the choice of the tuning parameter lambda, or a deeper analysis of the results in the real data application are examples of aspects in which this project could be completed.To sum up, the analyzed statistical tool has been proved to be a very useful instrument to find relationships that connect the elements present in a large data set. And after all, partial correlation networks allow the owner of this set to observe and analyze the existing linkages that could have been omitted otherwise.
Resumo:
We propose a class of models of social network formation based on a mathematical abstraction of the concept of social distance. Social distance attachment is represented by the tendency of peers to establish acquaintances via a decreasing function of the relative distance in a representative social space. We derive analytical results (corroborated by extensive numerical simulations), showing that the model reproduces the main statistical characteristics of real social networks: large clustering coefficient, positive degree correlations, and the emergence of a hierarchy of communities. The model is confronted with the social network formed by people that shares confidential information using the Pretty Good Privacy (PGP) encryption algorithm, the so-called web of trust of PGP.