962 resultados para Myenteric neuron


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amyotrophic lateral sclerosis (ALS) is a progressive degenerative disorder affecting motoneurons and the SOD1(G93A) transgenic mice are widely employed to study disease physiopathology and therapeutic strategies. Despite the cellular and biochemical evidences of an early motor system dysfunction, the conventional behavioral tests do not detect early motor impairments in SOD1 mouse model. We evaluated early changes in motor behavior of ALS mice by doing the analyses of tail elevation, footprint, automatic recording of motor activities by means of an infrared motion sensor activity system and electrophysiological measurements in male and female wild-type (WT) and SOD1(G93A) mice from postnatal day (P) 20 up to endpoint. The classical evaluations of mortality, weight loss, tremor, rotometer, hanging wire and inclined plane were also employed. There was a late onset (after P90) of the impairments of classical parameters and the outcome varied between genders of ALS mice, being tremor, cumulative survival, weight loss and neurological score about 10 days earlier in male than female ALS mice and also about 20 days earlier in ALS males regarding rotarod and hanging wire performances. While diminution of hindpaw base was 10 days earlier in ALS males (P110) compared to females, the steep length decreased 40 days earlier in ALS females (P60) than ALS males. The automatic analysis of motor impairments showed substantial late changes (after P90) of motility and locomotion in the ALS females, but not in the ALS males. It was surprising that the scores of tail elevation were already decreased in ALS males and females by P40, reaching the minimal values at the endpoint. The electrophysiological analyses showed early changes of measures in the ALS mouse sciatic nerve, i.e., decreased values of amplitude (P40) and nerve conduction velocity (P20), and also an increased latency (P20) reaching maximal level of impairments at the late disease phase. The early changes were not accompanied by reductions of neuronal protein markers of neurofilament 200 and ChAT in the ventral part of the lumbar spinal cord of P20 and P60 ALS mice by means of Western blot technique, despite remarkable decreases of those protein levels in P120 ALS mice. In conclusion, early changes of motor behavior and electrophysiological parameters in ALS mouse model must be taken into attention in the analyses of disease mechanisms and therapeutic effects. (C) 2011 Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brown-Vialetto-Van Laere syndrome (BVVLS) is a rare neurological disease characterized by sensorineural hearing loss and multiple cranial nerve palsies, usually involving the VIIth and IXth to XIIth cranial nerves. We describe the clinical and pathological features of a 33-year-old woman with BVVLS. The patient developed progressive exertional dyspnea, with clinical and laboratory findings of right-sided heart failure and pulmonary hypertension. She developed status epilepticus in the setting of cardiac deterioration and respiratory infection, and died of cardiogenic and septic shock. Autopsy disclosed bilateral neuronal loss and gliosis in the inferior colliculi, locus coeruleus and facial and vestibular nuclei. Cor pulmonale is a complication of hypoventilation-induced hypoxia and hypercapnia and had not yet been reported in BVVLS. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural magnetic resonance imaging and postmortem studies showed volume loss in the hippocampus in schizophrenia. The noted tissue reduction in the posterior section suggests that some cellular subfractions within this structure might be reduced in schizophrenia. To address this, we investigated numbers and densities of neurons, oligodendrocytes and astrocytes in the posterior hippocampal subregions in postmortem brains from ten patients with schizophrenia and ten matched controls using design-based stereology performed on Nissl-stained sections. Compared to the controls, the patients with schizophrenia showed a significant decrease in the mean number of oligodendrocytes in the left and right CA4. This is the first finding of reduced numbers of oligodendrocytes in CA4 of the posterior part of the hippocampus in schizophrenia. Our results are in line with earlier findings in the literature concerning decreased numbers of oligodendrocytes in the prefrontal cortex in schizophrenia. Our results may indicate disturbed connectivity of the CA4 of the posterior part of the hippocampus in schizophrenia and, thus, contribute to the growing number of studies showing the involvement of posterior hippocampal pathology in the pathophysiology of schizophrenia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the current study was to investigate the apoptosis of neurons, astrocytes and immune cells from human patients that were infected with rabies virus by vampire bats bite. Apoptotic neurons were identified by their morphology and immune cells were identified using double immunostaining. There were very few apoptotic neurons present in infected tissue samples, but there was an increase of apoptotic infiltrating CD4+ and TCD8+ adaptive immune cells in the rabies infected tissue. No apoptosis was present in NK, macrophage and astrocytes. The dissemination of the human rabies virus within an infected host may be mediated by viral escape of the virus from an infected cell and may involve an anti-apoptotic mechanism, which does not kill the neuron or pro-apoptosis of TCD4+ and TCD8+ lymphocytes and which allows for increased proliferation of the virus within the CNS by attenuation of the adaptive immune response. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human brain is often considered to be the most cognitively capable among mammalian brains and to be much larger than expected for a mammal of our body size. Although the number of neurons is generally assumed to be a determinant of computational power, and despite the widespread quotes that the human brain contains 100 billion neurons and ten times more glial cells, the absolute number of neurons and glial cells in the human brain remains unknown. Here we determine these numbers by using the isotropic fractionator and compare them with the expected values for a human-sized primate. We find that the adult male human brain contains on average 86.1 +/- 8.1 billion NeuN-positive cells (""neurons"") and 84.6 +/- 9.8 billion NeuN-negative (""nonneuronal"") cells. With only 19% of all neurons located in the cerebral cortex, greater cortical size (representing 82% of total brain mass) in humans compared with other primates does not reflect an increased relative number of cortical neurons. The ratios between glial cells and neurons in the human brain structures are similar to those found in other primates, and their numbers of cells match those expected for a primate of human proportions. These findings challenge the common view that humans stand out from other primates in their brain composition and indicate that, with regard to numbers of neuronal and nonneuronal cells, the human brain is an isometrically scaled-up primate brain. J. Comp. Neurol. 513:532-541, 2009. (c) 2009 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spinal muscular atrophy (SMA), the leading genetic cause of death in childhood, is an autosomal recessive neuromuscular disorder characterized by progressive muscle weakness, associated with deletions of the survival motor neuron (SMN) gene identified and mapped to chromosome 5q13. SMN is present in two highly homologous copies (SMN1 and SMN2). In the general population, normal individuals (noncarriers) have at least one telomeric (SMN1) copy, and 5% of them have no copies of SMN2. Approximately 95% of SMA patients carry homologous deletions of SMN1 exon(s) 7 (and 8). SMN1 and SMN2 exons 7 and 8 differ only by 1 bp each, and SMA diagnosis might be performed by single-strand conformational polymorphism, PCR amplification followed by restriction fragment length polymorphism (RFLP), multiple ligation-dependent probe amplification, or realtime PCR of SMNs exons 7 and 8. We developed a simpler and cost-effective method to detect SMN1 exon 7 deletion based on allele-specific amplification PCR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

arginine-vasopressin in the parvocellular neurons of the hypothalamic paraventricular nucleus is known to play an important role in the control of the hypothalamo-pituitary-adrenal axis. In the present study, we verify plasma corticosterone levels, the distribution of glucocorticoid receptor- and arginine-vasopressin-positive neurons, and the co-localization of both glucocorticoid receptors and arginine-vasopressin in neurons in the anterior and medial parvocellular subdivisions of the paraventricular nucleus after manipulations of the hypothalamus-pituitary-adrenal axis. Normal, sham surgery, and adrenalectomized male rats were subjected to intraperitoneal injections of saline or dexamethasone to measure plasma corticosterone levels by a radioimmunoassay. We also examined arginine-vasopressin and glucocorticoid receptor immunofluorescence in sections from the paraventricular nucleus. Our results showed that the immunoreactivity of arginine-vasopressin neurons increased in the anterior parvocellular subdivision and decreased in the medial parvocellular subdivision from adrenalectomized rats treated with dexamethasone. On the other hand, we showed that the immunoreactivity of glucocorticoid receptors increased in the anterior and medial parvocellular subdivisions of these same animals. However, the immunoreactivity of glucocorticoid receptors is higher in the medial parvocellular than anterior parvocellular subdivision. The co-localization of arginine-vasopressin and glucocorticoid receptors was found only in the medial parvocellular subdivision. These findings indicate that glucocorticoids have direct actions on arginine-vasopressin-positive neurons in the medial parvocellular but not anterior parvocellular subdivision. There is a differentiated pattern of arginine-vasopressin-positive neuron expression between the anterior and medial parvocellular subdivisions. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucocorticoids have major effects on food intake, as demonstrated by the decrease of food intake following adrenalectomy (ADX); however, the mechanisms leading to these effects are not well understood. Oxytocin (OT) has been shown to reduce food intake. We evaluated the effects of glucocorticoids on OT neuron activation and OT mRNA expression in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei induced by feeding. We also evaluated the effect of pretreatment with OT-receptor antagonist ([d(CH2)5,Tyr(Me)2,Orn8]-vasotocin, OVT) on food intake in ADX rats. Fos/OT neurons in the posterior parvocellular subdivision of the PVN were increased after refeeding, with a higher number in the ADX group, compared with sham and ADX+corticosterone (B) groups, with no difference in the medial parvocellular and magnocellular subdivisions of the PVN. ADX increased OT mRNA expression in the PVN both in fasting and refeeding condition, compared with sham and ADX+B groups. In the SON, refeeding increased the number of Fos/OT neurons, with a higher number in the ADX+B group. In fasted condition, OT mRNA expression in the SON was increased in ADX and ADX+B, compared with sham group. Pretreatment with OVT reversed the ADX-induced hypophagia, with no difference between sham and ADX+B animals. The present results show that glucocorticoid withdrawal induces a higher activation of PVN OT neurons in response to feeding, and an increase of OT mRNA expression in the PVN and OT-receptor antagonist reverses the anorexigenic effect induced by ADX These data indicate that PVN OT neurons might mediate the hypophagic effect induced by adrenalectomy. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vesicle-associated membrane protein/synaptobrevin-associated membrane protein B (VAPB) Pro56Ser Mutation has been identified in Brazilian families showing various motor neuron syndromes. However, the neurophysiological characteristics of these patients have not been detailed, and some questions Still need to be solved, such as the possible presence of myotonia and the origin of the abdominal protrusion seen in most patients. The eventual finding of suggestive electrophysiological characteristics would be helpful not only for clinical diagnosis but also to selection of the appropriate DNA test. To clarify these questions we carried out sensory and motor conduction Studies, including symphatetic skin response, and needle examination in six genetically proven affected members. The electromyographic findings were those of a slowly progressive motor neuron disorder. Topographically, the abdominal muscles were severely affected, but the facial and laryngeal muscles were preserved or very mildly involved. Sensory conduction studies and sympathetic Skin responses were normal. No myotonic discharge was recorded. These findings are indistinguishable from those of other motor neuron disorders, although the predominant involvement of the proximal limbs and of the abdominal muscles may be of some help in the appropriate clinical setting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neural maturation involves diverse interaction and signaling mechanisms that are essential to the development of the nervous system. However, little is known about the development of neurons in heterotopic brain tissue in the lung, a rare abnormality observed in malformed babies and fetuses. The aim of this study was to identify the neurons and to investigate their maturation in experimental brain tissue heterotopia during fetal and neonatal periods. The fetuses from 24 pregnant female Swiss mice were used to induce brain tissue heterotopia on the 15th gestational day. Briefly, the brain of one fetus of each dam was extracted, disaggregated, and injected into the right hemithorax of siblings. Six of these fetuses with pulmonary brain tissue implantation were collected on the 18th gestational day (group E18), and six others were collected on the 8th postnatal day (group P8). The brain of each fetus from dams not submitted to any experimental procedure was collected on the 18th gestational day (group CE18) and on the 8th postnatal day (group CP8) to serve as a control for neuronal quantitation and maturation. Immunohistochemical staining of NeuN was used to assess neuron quantity and maturation. The NeuN labeling index was greater in the postnatal period than in the fetal period for the experimental and control groups (138 > E18 and CP8 > CE18), although there were fewer neurons in experimental than in control groups (P8 < CP8 and El 8 < CE1 8) (P < 0.005). These results indicate that fetal neuroblasts/neurons not only survive a dramatic event such as mechanical disaggregation, in the same way as it happens in human cases, but also they retain their development in heterotopia, irrespective of local tissue influences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To evaluate the clinical and hippocampal histological features of patients with mesial temporal lobe epilepsy (MTLE) in both familial (FMTLE) and sporadic (SMTLE) forms. Methods: Patients with FMTLE (n = 20) and SMTLE (n = 39) who underwent surgical treatment for refractory seizures were studied at the University of Sao Paulo School of Medicine at Ribeirao Preto. FMTLE was defined when at least two individuals in a family had clinical diagnosis of MTLE. Hippocampi from all patients were processed for Nissl/HE and Timm`s stainings. Both groups were compared for clinical variables, hippocampal cell densities, and intensity of supragranular mossy fiber staining. Results: There were no significant differences between FMTLE and SMTLE groups in the following: age at the surgery, age of first usual epileptic seizure, history of initial precipitating injury (IPI), age of IPI, latent period, ictal and interictal video-EEG patterns, presence of hippocampal atrophy and signal changes at MRI, and postoperative outcome. In addition, no differences were found in cell densities in hippocampal cornu ammonis subfields (CA1, CA2, CA3, CA4), fascia dentata, polymorphic region, subiculum, prosubiculum, and presubiculum. However, patients with SMTLE had greater intensity of mossy fiber Timm`s staining in the fascia dentata-inner molecular layer (p < 0.05). Discussion: Patients with intractable FMTLE present a clinical profile and most histological findings comparable to patients with SMTLE. Interestingly, mossy fiber sprouting was less pronounced in patients with FMTLE, suggesting that, when compared to SMTLE, patients with FMTLE respond differently to plastic changes plausibly induced by cell loss, neuronal deafferentation, or epileptic seizures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chorea-acanthocytosis (ChAc) is an uncommon autosomal recessive disorder due to mutations of the VPS13A gene, which encodes for the membrane protein chorein. ChAc presents with progressive limb and orobuccal chorea, but there is often a marked dysexecutive syndrome. ChAc may first present with neuropsychiatric disturbance such as obsessive-compulsive disorder (OCD), suggesting a particular role for disruption to striatal structures involved in non-motor frontostriatal loops, such as the head of the caudate nucleus. Two previous studies have suggested a marked reduction in volume in the caudate nucleus and putamen, but did not examine morphometric change. We investigated morphometric change in 13 patients with genetically or biochemically confirmed ChAc and 26 age- and gender-matched controls. Subjects underwent magnetic resonance imaging and manual segmentation of the caudate nucleus and putamen, and shape analysis using a non-parametric spherical harmonic technique. Both structures showed significant and marked reductions in volume compared with controls, with reduction greatest in the caudate nucleus. Both structures showed significant shape differences, particularly in the head of the caudate nucleus. No significant correlation was shown between duration of illness and striatal volume or shape, suggesting that much structural change may have already taken place at the time of symptom onset. Our results suggest that striatal neuron loss may occur early in the disease process, and follows a dorsal-ventral gradient that may correlate with early neuropsychiatric and cognitive presentations of the disease. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The superior cervical ganglion (SCG) in mammals varies in structure according to developmental age, body size, gender, lateral asymmetry, the size and nuclear content of neurons and the complexity and synaptic coverage of their dendritic trees. In small and medium-sized mammals, neuron number and size increase from birth to adulthood and, in phylogenetic studies, vary with body size. However, recent studies on larger animals suggest that body weight does not, in general, accurately predict neuron number. We have applied design-based stereological tools at the light-microscopic level to assess the volumetric composition of ganglia and to estimate the numbers and sizes of neurons in SCGs from rats, capybaras and horses. Using transmission electron microscopy, we have obtained design-based estimates of the surface coverage of dendrites by postsynaptic apposition zones and model-based estimates of the numbers and sizes of synaptophysin-labelled axo-dendritic synaptic disks. Linear regression analysis of log-transformed data has been undertaken in order to establish the nature of the relationships between numbers and SCG volume (V(scg)). For SCGs (five per species), the allometric relationship for neuron number (N) is N=35,067xV (scg) (0.781) and that for synapses is N=20,095,000xV (scg) (1.328) , the former being a good predictor and the latter a poor predictor of synapse number. Our findings thus reveal the nature of SCG growth in terms of its main ingredients (neurons, neuropil, blood vessels) and show that larger mammals have SCG neurons exhibiting more complex arborizations and greater numbers of axo-dendritic synapses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stellate ganglion (SG) represents the main sympathetic input to the heart. This study aimed at investigating physical exercise-related changes in the quantitative aspects of SG neurons in treadmill-exercised Wistar rats. By applying state-of-the-art design-based stereology, the SG volume, total number of SG neurons, mean perikaryal volume of SG neurons, and the total volume of neurons in the whole SG have been examined. Arterial pressure and heart rate were also measured at the end of the exercise period. The present study showed that a low-intensity exercise training program caused a 12% decrease in the heart rate of trained rats. In contrast, there were no effects on systolic pressure, diastolic pressure, or mean arterial pressure. As to quantitative changes related to physical exercise, the main findings were a 21% increase in the fractional volume occupied by neurons in the SG, and an 83% increase in the mean perikaryal volume of SG neurons in treadmill-trained rats, which shows a remarkable neuron hypertrophy. It seems reasonable to infer that neuron hypertrophy may have been the result of a functional overload imposed on the SG neurons by initial posttraining sympathetic activation. From the novel stereological data we provide, further investigations are needed to shed light on the mechanistic aspect of neuron hypertrophy: what role does neuron hypertrophy play? Could neuron hypertrophy be assigned to the functional overload induced by physical exercise? (C) 2008 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study the main question investigated was the number and size of both binucleate and mononucleate superior cervical ganglion (SCG) neurons and, whether post-natal development would affect these parameters. Twenty left SCGs from 20 male pacas were used. Four different ages were investigated, that is newborn (4 days), young (45 days), adult (2 years), and aged animals (7 years). By using design-based stereo-logical methods, that is the Cavalieri principle and a physical disector combined with serial sectioning, the total volume of ganglion and total number of mononucleate and binucleate neurons were estimated. Furthermore, the mean perikaryal (somal) volume of mononucleate and binucleate neurons was estimated using the vertical nucleator. The main findings of this study were a 154% increase in the SCG volume, a 95% increase in the total number of mononucleate SCG neurons and a 50% increase in the total volume of SCG neurons. In conclusion, apart from neuron number, different adaptive mechanisms may coexist in the autonomic nervous system to guarantee a functional homeostasis during ageing, which is not always associated with neuron losses. Anat Rec, 292:966-975, 2009. (C) 2009 Wiley-Liss, Inc.