874 resultados para Muscle strength exercises
Resumo:
BACKGROUND: Nerve transfers or graft repairs in upper brachial plexus palsies are 2 available options for elbow flexion recovery. OBJECTIVE: To assess outcomes of biceps muscle strength when treated either by grafts or nerve transfer. METHODS: A standard supraclavicular approach was performed in all patients. When roots were available, grafts were used directed to proximal targets. Otherwise, a distal ulnar nerve fascicle was transferred to the biceps branch. Elbow flexion strength was measured with a dynamometer, and an index comparing the healthy arm and the operated-on side was developed. Statistical analysis to compare both techniques was performed. RESULTS: Thirty-five patients (34 men) were included in this series. Mean age was 28.7 years (standard deviation, 8.7). Twenty-two patients (62.8%) presented with a C5-C6 injury, whereas 13 patients (37.2%) had a C5-C6-C7 lesion. Seventeen patients received reconstruction with grafts, and 18 patients were treated with a nerve transfer from the ulnar nerve to the biceps. The trauma to surgery interval (mean, 7.6 months in both groups), strength in the healthy arm, and follow-up duration were not statistically different. On the British Medical Research Council muscle strength scale, 8 of 17 (47%) patients with a graft achieved >= M3 biceps flexion postoperatively, vs 16 of 18 (88%) post nerve transfers (P = .024). This difference persisted when a muscle strength index assessing improvement relative to the healthy limb was used (P = .031). CONCLUSION: The results obtained from ulnar nerve fascicle transfer to the biceps branch were superior to those achieved through reconstruction with grafts.
Resumo:
Background: The objective of this study was to analyze the muscle strength and endurance of the proximal and distal lower-extremity muscles in peripheral artery disease (PAD) patients. Methods: Twenty patients with bilateral PAD with symptoms of intermittent claudication and nine control subjects without PAD were included in the study, comprising 40 and 18 legs, respectively. All subjects performed an isokinetic muscle test to evaluate the muscle strength and endurance of the proximal (knee extension and knee flexion movements) and distal (plantar flexion and dorsiflexion movements) muscle groups in the lower extremity. Results: Compared with the control group, the PAD group presented lower muscle strength in knee flexion (-14.0%), dorsiflexion (-26.0%), and plantar flexion (-21.2%) movements (P < 0.05) but similar strength in knee extension movements (P > 0.05). The PAD patients presented a 13.5% lower knee flexion/extension strength ratio compared with the control subjects (P < 0.05), as well as lower muscle endurance in dorsiflexion (-28.1%) and plantar flexion (-17.0%) movements (P < 0.05). The muscle endurance in knee flexion and knee extension movements was similar between PAD patients and the control subjects (P > 0.05). Conclusion: PAD patients present lower proximal and distal muscle strength and lower distal muscle endurance than control patients. Therefore, interventions to improve muscle strength and endurance should be prescribed for PAD patients.
Resumo:
Study design: Cross-sectional. Objective: To analyze the relationships between functional tests, arm strength and root mean square of surface electromyography (EMG). Setting: Sao Paulo, Brazil. Methods: Twenty-four individuals with chronic tetraplegia participated. Upper extremity motor score (UEMS), functional independence measure (FIM) motor score, spinal cord independence measure III and capabilities of upper extremity (CUE) were performed. Muscle strength of the right elbow flexors-extensors was assessed using dynamometry and manual muscle test (MMT) and EMG of right biceps and triceps brachii were performed. Spearman's rank correlation coefficients and Mann-Whitney's U-test were used. Results: Functional tests and UEMS correlated strongly among them. UEMS highly correlated with triceps dynamometry and EMG. The dynamometry showed a very high correlation with MMT on the extensor group and a moderate correlation with flexor group. Triceps EMG showed moderate correlation with FIM and CUE. High correlations between triceps EMG and elbow extensors dynamometry and MMT were observed. A significant better performance on functional tests was observed on lower ASIA motor levels. The low-tetraplegia group showed a significant higher score on triceps EMG and dynamometry. Conclusion: Arm strength and EMG seem to be related to functional capabilities and independence in chronic tetraplegia. Spinal Cord (2012) 50, 28-32; doi:10.1038/sc.2011.95; published online 30 August 2011
Resumo:
Abstract Background This study compares the immediate effects of local and adjacent acupuncture on the tibialis anterior muscle and the amount of force generated or strength in Kilogram Force (KGF) evaluated by a surface electromyography. Methods The study consisted of a single blinded trial of 30 subjects assigned to two groups: local acupoint (ST36) and adjacent acupoint (SP9). Bipolar surface electrodes were placed on the tibialis anterior muscle, while a force transducer was attached to the foot of the subject and to the floor. An electromyograph (EMG) connected to a computer registered the KGF and root mean square (RMS) before and after acupuncture at maximum isometric contraction. The RMS values and surface electrodes were analyzed with Student's t-test. Results Thirty subjects were selected from a total of 56 volunteers according to specific inclusion and exclusion criteria and were assigned to one of the two groups for acupuncture. A significant decrease in the RMS values was observed in both ST36 (t = -3.80, P = 0,001) and SP9 (t = 6.24, P = 0.001) groups after acupuncture. There was a decrease in force in the ST36 group after acupuncture (t = -2.98, P = 0.006). The RMS values did not have a significant difference (t = 0.36, P = 0.71); however, there was a significant decrease in strength after acupuncture in the ST36 group compared to the SP9 group (t = 2.51, P = 0.01). No adverse events were found. Conclusion Acupuncture at the local acupoint ST36 or adjacent acupoints SP9 reduced the tibialis anterior electromyography muscle activity. However, acupuncture at SP9 did not decrease muscle strength while acupuncture at ST36 did.
Resumo:
Eccentric cycling, where the goal is to resist the pedals, which are driven by a motor, increases muscle strength and size in untrained subjects. We hypothesized that it could also be beneficial for athletes, particularly in alpine skiing, which involves predominantly eccentric contractions at longer muscle lengths. We investigated the effects of replacing part of regular weight training with eccentric cycling in junior male alpine skiers using a matched-pair design. Control subjects ( N=7) executed 1-h weight sessions 3 times per week, which included 4-5 sets of 4 leg exercises. The eccentric group ( N=8) performed only 3 sets, followed by continuous sessions on the eccentric ergometer for the remaining 20 min. After 6 weeks, lean thigh mass increased significantly only in the eccentric group. There was a groupxtime effect on squat-jump height favouring the eccentric group, which also experienced a 6.5% improvement in countermovement-jump height. The ability to finely modulate muscle force during variable eccentric cycling improved 50% (p=0.004) only in the eccentric group. Although eccentric cycling did not significantly enhance isometric leg strength, we believe it is beneficial for alpine skiers because it provides an efficient means for hypertrophy while closely mimicking the type of muscle actions encountered while skiing.
Resumo:
The muscle has a wide range of possibilities to adapt its phenotype. Repetitive submaximal concentric exercise (i.e., shortening contractions) mainly leads to adaptations of muscle oxidative metabolism and endurance while eccentric exercise (i.e., lengthening contractions) results in muscle growth and gain of muscle strength. Modified gene expression is believed to mediate these exercise-specific muscle adjustments. In the present study, early alterations of the gene expression signature were monitored by a muscle-specific microarray. Transcript profiling was performed on muscle biopsies of vastus lateralis obtained from six male subjects before and in a 24-h time course after a single bout of mild eccentric ergometer exercise. The eccentric exercise consisted of 15 min of eccentric cycling at 50% of the individual maximal concentric power output leading to muscle soreness (5.9 on a 0-10 visual analogue scale) and limited muscle damage (1.7-fold elevated creatine kinase activity). Muscle impairment was highlighted by a transient reduction in jumping height after the eccentric exercise. On the gene expression level, we observed a general early downregulation of detected transcripts, followed by a slow recovery close to the control values within the first 24 h post exercise. Only very few regulatory factors were increased. This expression signature is different from the signature of a previously published metabolic response after an intensive endurance-type concentric exercise as well as after maximal eccentric exercise. This is the first description of the time course of changes in gene expression as a consequence of a mild eccentric stimulus.
Resumo:
Objective: to determine the short- and long-term effects of resistance training on muscle strength, psychological well-being, control-beliefs, cognitive speed and memory in normally active elderly people. Methods: 46 elderly people (mean age 73.2 years; 18 women and 28 men), were randomly assigned to training and control groups (n = 23 each). Pre- and post-tests were administered 1 week before and 1 week after the 8-week training intervention. The training sessions, performed once a week, consisted of a 10 min warm-up phase and eight resistance exercises on machines. Results: there was a significant increase in maximum dynamic strength in the training group. This training effect was associated with a significant decrease in self-attentiveness, which is known to enhance psychological well-being. No significant changes could be observed in control-beliefs. Modest effects on cognitive functioning occurred with the training procedure: although there were no changes in cognitive speed, significant pre/post-changes could be shown in free recall and recognition in the experimental group. A post-test comparison between the experimental group and control group showed a weak effect for recognition but no significant differences in free recall. Significant long-term effects were found in the training group for muscular strength and memory performance (free recall) 1 year later. Conclusion: an 8-week programme of resistance training lessens anxiety and self-attentiveness and improves muscle strength.
Resumo:
AIMS Vent-HeFT is a multicentre randomized trial designed to investigate the potential additive benefits of inspiratory muscle training (IMT) on aerobic training (AT) in patients with chronic heart failure (CHF). METHODS AND RESULTS Forty-three CHF patients with a mean age of 58 ± 12 years, peak oxygen consumption (peak VO2 ) 17.9 ± 5 mL/kg/min, and LVEF 29.5 ± 5% were randomized to an AT/IMT group (n = 21) or to an AT/SHAM group (n = 22) in a 12-week exercise programme. AT involved 45 min of ergometer training at 70-80% of maximum heart rate, three times a week for both groups. In the AT/IMT group, IMT was performed at 60% of sustained maximal inspiratory pressure (SPImax ) while in the AT/SHAM group it was performed at 10% of SPImax , using a computer biofeedback trainer for 30 min, three times a week. At baseline and at 3 months, patients were evaluated for exercise capacity, lung function, inspiratory muscle strength (PImax ) and work capacity (SPImax ), quality of life (QoL), LVEF and LV diameter, dyspnoea, C-reactive protein (CRP), and NT-proBNP. IMT resulted in a significantly higher benefit in SPImax (P = 0.02), QoL (P = 0.002), dyspnoea (P = 0.004), CRP (P = 0.03), and NT-proBNP (P = 0.004). In both AT/IMT and AT/SHAM groups PImax (P < 0.001, P = 0.02), peak VO2 (P = 0.008, P = 0.04), and LVEF (P = 0.005, P = 0.002) improved significantly; however, without an additional benefit for either of the groups. CONCLUSION This randomized multicentre study demonstrates that IMT combined with aerobic training provides additional benefits in functional and serum biomarkers in patients with moderate CHF. These findings advocate for application of IMT in cardiac rehabilitation programmes.
Resumo:
BACKGROUND Pelvic floor muscle training is effective and recommended as first-line therapy for female patients with stress urinary incontinence. However, standard pelvic floor physiotherapy concentrates on voluntary contractions even though the situations provoking stress urinary incontinence (for example, sneezing, coughing, running) require involuntary fast reflexive pelvic floor muscle contractions. Training procedures for involuntary reflexive muscle contractions are widely implemented in rehabilitation and sports but not yet in pelvic floor rehabilitation. Therefore, the research group developed a training protocol including standard physiotherapy and in addition focused on involuntary reflexive pelvic floor muscle contractions. METHODS/DESIGN The aim of the planned study is to compare this newly developed physiotherapy program (experimental group) and the standard physiotherapy program (control group) regarding their effect on stress urinary incontinence. The working hypothesis is that the experimental group focusing on involuntary reflexive muscle contractions will have a higher improvement of continence measured by the International Consultation on Incontinence Modular Questionnaire Urinary Incontinence (short form), and - regarding secondary and tertiary outcomes - higher pelvic floor muscle activity during stress urinary incontinence provoking activities, better pad-test results, higher quality of life scores (International Consultation on Incontinence Modular Questionnaire) and higher intravaginal muscle strength (digitally tested) from before to after the intervention phase. This study is designed as a prospective, triple-blinded (participant, investigator, outcome assessor), randomized controlled trial with two physiotherapy intervention groups with a 6-month follow-up including 48 stress urinary incontinent women per group. For both groups the intervention will last 16 weeks and will include 9 personal physiotherapy consultations and 78 short home training sessions (weeks 1-5 3x/week, 3x/day; weeks 6-16 3x/week, 1x/day). Thereafter both groups will continue with home training sessions (3x/week, 1x/day) until the 6-month follow-up. To compare the primary outcome, International Consultation on Incontinence Modular Questionnaire (short form) between and within the two groups at ten time points (before intervention, physiotherapy sessions 2-9, after intervention) ANOVA models for longitudinal data will be applied. DISCUSSION This study closes a gap, as involuntary reflexive pelvic floor muscle training has not yet been included in stress urinary incontinence physiotherapy, and if shown successful could be implemented in clinical practice immediately. TRIAL REGISTRATION NCT02318251 ; 4 December 2014 First patient randomized: 11 March 2015.
Resumo:
Hormonal variations during the menstrual cycle (MC) may influence trainability of strength. We investigated the effects of a follicular phase-based strength training (FT) on muscle strength, muscle volume and microscopic parameters, comparing it to a luteal phase-based training (LT). Eumenorrheic women without oral contraception (OC) (N = 20, age: 25.9 ± 4.5 yr, height: 164.2 ± 5.5 cm, weight: 60.6 ± 7.8 kg) completed strength training on a leg press for three MC, and 9 of them participated in muscle biopsies. One leg had eight training sessions in the follicular phases (FP) and only two sessions in the luteal phases (LP) for follicular phase-based training (FT), while the other leg had eight training sessions in LP and only two sessions in FP for luteal phase-based training (LT). Estradiol (E2), progesterone (P4), total testosterone (T), free testosterone (free T) and DHEA-s were analysed once during FP (around day 11) and once during LP (around day 25). Maximum isometric force (Fmax), muscle diameter (Mdm), muscle fibre composition (No), fibre diameter (Fdm) and cell nuclei-to-fibre ratio (N/F) were analysed before and after the training intervention. T and free T were higher in FP compared to LP prior to the training intervention (P < 0.05). The increase in Fmax after FT was higher compared to LT (P <0.05). FT also showed a higher increase in Mdm than LT (P < 0.05). Moreover, we found significant increases in Fdm of fibre type ΙΙ and in N/F only after FT; however, there was no significant difference from LT. With regard to change in fibre composition, no differences were observed between FT and LT. FT showed a higher gain in muscle strength and muscle diameter than LT. As a result, we recommend that eumenorrheic females without OC should base the periodization of their strength training on their individual MC.
Resumo:
Mechanostat theory postulates that developmental changes in bone strength are secondary to the increasing loads imposed by larger muscle forces. Therefore, the increase in muscle strength should precede the increase in bone strength. We tested this prediction using densitometric surrogate measures of muscle force (lean body mass, LBM) and bone strength (bone mineral content, BMC) in a study on 70 boys and 68 girls who were longitudinally examined during pubertal development. On the level of the total body, the peak in LBM accrual preceded the peak in BMC accretion by an average of 0.51 years in girls and by 0.36 years in boys. In the arms, the maximal increase in LBM was followed by arm peak BMC accrual after an interval of 0.71 years in girls and 0.63 years in boys. In the lower extremities, the maximal increase in LBM was followed by peak BMC accrual after an interval of 0.22 years in girls and 0.48 years in boys. A multiple regression model revealed that total body peak LBM velocity, but not peak height velocity and sex, was independently associated with total body peak BMC velocity (r(2) = 0.50; P < 0.001). Similarly, arm and leg peak LBM velocity, but not peak height velocity and sex, were independently associated with arm and leg peak BMC velocity, respectively (r(2) = 0.61 for arms, r(2) = 0.41 for legs; P < 0.001 in both cases). These results are compatible with the view that bone development is driven by muscle development, although the data do not exclude the hypothesis that the two processes are independently determined by genetic mechanisms. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Purpose: Although the beneficial effects of estrogen use on cardiovascular and cognitive function in postmenopausal women have been recently discredited, controversy remains regarding its usefulness for maintaining skeletal muscle mass or strength. Therefore, the purpose of this study was to determine whether estrogen use is associated with enhanced muscle composition and, if so, whether this translates into improved strength and physical function. Methods: Cross-sectional analysis of 840 well-functioning community-dwelling white women (current estrogen replacement therapy (ERT) users = 259, nonusers = 581) aged 70-79 yr participating in the Health, Aging and Body Composition Study. Muscle composition of the midthigh by computed tomography included cross-sectional area (CSA) of the quadriceps, hamstrings, intermuscular fat and subcutaneous fat, and muscle attenuation in Hounsfield units (HU) as a measure of muscle density. Isometric hand grip and isokinetic knee extensor strength were assessed by dynamometry. Physical function was assessed using a summary scale that included usual 6-m walk and narrow walk speed, repeated chair stands, and standing balance. Results: In analyses of covariance adjusted for relevant confounders. quadriceps muscle CSA and HU were greater in Current ERT than non-ERT women (P < 0.05). Grip strength was also greater (P < 0.05) in women taking ERT while knee extensor strength approached significance (P < 0.10). However, differences in muscle composition and strength were modest at <= 3.3%. There was no difference by ERT status for the hamstring, muscles. fat CSA. or for physical function. Conclusion: The associations between ERT and muscle composition and strength were minor and did not translate into improved physical function. Initiation of ERT for preservation of muscle composition and function may not be indicated.
Resumo:
Hormone replacement therapy (HRT) has been reported to exert a positive effect on preserving muscle strength following the menopause, however, the mechanism of action remains unclear. We examined whether the mechanism involved preservation of muscle composition as determined by skeletal muscle attenuation. Eighty women aged 50-57 years were randomly assigned to either: HRT, exercise (Ex), HRT + exercise (ExHRT), and control (Co) for 1 year. The study was double-blinded with subjects receiving oestradiol and norethisterone acetate (Kliogest) or placebo. Exercise included progressive high-impact training for the lower limbs. Skeletal muscle attenuation in Hounsfield units (HU) was determined by computed tomography of the mid-thigh. Areas examined were the quadriceps compartment (includes intermuscular adipose tissue), quadriceps muscles, the posterior compartment and posterior muscles. Muscle performance was determined by knee extensor strength, vertical jump height, and running speed over 20 m. Fifty-one women completed the intervention. Vertical jump height and running speed improved in the HRT and ExHRT groups compared with Co (interaction, P < 0.01). For both the quadriceps compartment and quadriceps muscles, HU significantly increased (interaction, P <= 0.005) for HRT, Ex, and ExHRT compared with Co. For the posterior compartment, HU for the HRT and ExHRT were significantly increased compared with Co, while for posterior muscles, ExHRT was significantly greater than Co. Although the effects were modest, the results indicate that HRT, either alone or combined with exercise, may play a role in preserving/improving skeletal muscle attenuation in early postmenopausal women and thereby exert a positive effect on muscle performance.
Resumo:
Background: The age-related loss of muscle power in older adults is greater than that of muscle strength and is associated with a decline in physical performance. Objective: To investigate the effects of a short-term high-velocity varied resistance training programme on physical performance in healthy community-dwelling adults aged 60-80 years. Methods: Subjects undertook exercise (EX; n = 15) or maintained customary activity (controls, CON; n = 10) for 8 weeks. The EX group trained 2 days/week using machine weights for three sets of eight repetitions at 35, 55, and 75% of their one-repetition maximum (the maximal weight that an individual can lift once with acceptable form) for seven upper- and lower-body exercises using explosive concentric movements. Results: Fourteen EX and 10 CON subjects completed the study. Dynamic muscle strength significantly increased (p = 0.001) in the EX group for all exercises (from 21.4 +/- 9.6 to 82.0 +/- 59.2%, mean +/- SD) following training, as did knee extension power (p < 0.01). Significant improvement occurred for the EX group in the floor rise to standing (10.4 &PLUSMN; 11.5%, p = 0.004), usual 6-metre walk (6.6 &PLUSMN; 8.2%, p = 0.010), repeated chair rise (10.4 &PLUSMN; 15.6%, p = 0.013), and lift and reach (25.6 &PLUSMN; 12.1%, p = 0.002) performance tasks but not in the CON group. Conclusions: Progressive resistance training that incorporates rapid rate-of-force development movements may be safely undertaken in healthy older adults and results in significant gains in muscle strength, muscle power, and physical performance. Such improvements could prolong functional independence and improve the quality of life. Copyright (C) 2005 S. Karger AG, Basel.
Resumo:
Crohn's disease (CD) is associated with a number of secondary conditions including osteoporosis, which increases the risk of bone fracture. The cause of metabolic bone disease in this Population is believed to be multifactorial and may include the disease itself and associated inflammation, high-close corticosteroid use, weight loss and malabsorption, a lack of exercise and physical activity, and all underlying genetic predisposition to bone loss. Reduced bone mineral density has been reported in between 5% to 80% of CD sufferers, although it is generally believed that approximately 40% of patients suffer from osteopenia and 15% from osteoporosis. Recent studies Suggest a small but significantly increased risk of fracture compared with healthy controls and, perhaps, sufferers of other gastrointestinal disorders Such as ulcerative colitis. The role of physical activity and exercise in the prevention and treatment of CD-related bone loss has received little attention, despite the benefits of specific exercises being well documented in healthy populations. This article reviews the prevalence of and risk factors for low bone mass in CD patients and examines various treatments for osteoporosis in these patients, with a particular focus on physical activity.