986 resultados para Muon spectrometer
Resumo:
According to the SM, while Lepton Flavour Violation is allowed in the neutral sector, Charged Lepton Flavour Violation (CLFV) processes are forbidden. The Mu2e Experiment at Fermilab will search for the CLFV process of neutrinoless conversion of a muon into an electron within the field of an Al nucleus. The Mu2e detectors and its state-of-the-art superconducting magnetic system are presented, with special focus put to the electromagnetic crystal calorimeter. The calorimeter is composed by two annular disks, each one hosting pure CsI crystals read-out by custom silicon photomultipliers (SiPMs). The SiPMs are amplified by custom electronics (FEE) and are glued to copper holders in group of 2 SiPMs and 2 FEE boards thus forming a crystal Readout Unit. These Readout Units are being tested at the Quality Control (QC) Station, whose design, realization and operations are presented in this work. The QC Station allows to determine the gain, the response and the photon detection efficiency of each unit and to evaluate the dependence of these parameters from the supply voltage and temperature. The station is powered by two remotely-controlled power supplies and monitored thanks to a Slow Control system which is also illustrated in this work. In this thesis, we also demonstrated that the calorimeter can perform its own measurement of the Mu2e normalization factor, i.e. the counting of the 1.8 MeV photon line produced in nuclear muon captures. A specific calorimeter sub-system called CAPHRI, composed by four LYSO crystals with SiPM readout, has been designed and tested. We simulated the capability of this system on performing this task showing that it can get a faster and more reliable measurement of the muon capture rates with respect to the current Mu2e detector dedicated to this measurement. The characterization of energy resolution and response uniformity of the four procured LYSO crystals are llustrated.
Resumo:
A tracer experiment is carried out with transgenic T (variety M 7211 RR) and non-transgenic NT (variety MSOY 8200) soybean plants to evaluate if genetic modification can influence the uptake and translocation of Fe. A chelate of EDTA with enriched stable (57)Fe is applied to the plants cultivated in vermiculite plus substrate and the (57)Fe acts as a tracer. The exposure of plants to enriched (57)Fe causes the dilution of the natural previously existing Fe in the plant compartments and then the changed Fe isotopic ratio ((57)Fe/(56)Fe) is measured using a quadrupole-based inductively coupled plasma mass spectrometer equipped with a dynamic reaction cell (DRC). Mathematical calculations based on the isotope dilution methodology allow distinguishing the natural abundance Fe from the enriched Fe (incorporated during the experiment). The NT soybean plants acquire higher amounts of Fe from natural abundance (originally present in the soil) and from enriched Fe (coming from the (57)Fe-EDTA during the experiment) than T soybean ones, demonstrating that the NT soybean plants probably absorb higher amounts of Fe, independently of the source. The percentage of newly incorporated Fe (coming from the treatment) was approximately 2.0 and 1.1% for NT and T soybean plants, respectively. A higher fraction (90.1%) of enriched Fe is translocated to upper parts, and a slightly lower fraction (3.8%) is accumulated in the stems by NT plants than by T ones (85.1%; 5.1%). Moreover, in both plants, the Fe-EDTA facilitates the transport and translocation of Fe to the leaves. The genetic modification is probably responsible for differences observed between T and NT soybean plants.
Resumo:
Nanorap is a new nanotechnological formulation for topical anesthesia composed of lidocaine (2.5%) and prilocaine (2.5%). The present study evaluated the pharmacokinetics (PK) of Nanorap. For the determination of lidocaine and prilocaine in human plasma a new method using high-performance liquid-chromatography coupled to tandem mass spectrometry was developed. Nanorap pharmacodynamic (PD) and its physical proprieties were also evaluated. Nanorap was administered by topical application of 2g to healthy volunteers and blood samples were collected for the PK analysis. The drugs were extracted from plasma by liquid-liquid extraction with ether/hexane (80/20, v/v). The chromatography separation was performed on a Genesis C18 analytical column 4 µm (100 x 2.1 mm i.d.) with a mobile phase of methanol/acetonitrile/water (40/30/30, for lidocaine, and 50/30/20, for prilocaine, v/v/v) + 2 mM of ammonium acetate and ropivacaine as internal standard. The drugs were quantified using a mass spectrometer with an electrospray source in the ESI positive mode (ES+) configured for multiple reaction monitoring. The PD of Nanorap was evaluated with the use of a visual analogue scale. Nanorap was characterized by cryofracture. The chromatography run time was 5.5 min for lidocaine and 3.3 min for prilocaine and the lower limit of quantification was 0.05 ng/mL for both drugs. Mean Cmax was 6.62 and 1.72 ng/mL for lidocaine and prilocaine, respectively. Median Tmax was 6.5 hours for both drugs. Nanocapsules had a mean size of 88nm and mean drug association of 92.5% and 89% for lidocaine and prilocaine, respectively. The PD study showed that Nanorap has a sufficient analgesic effect (>30% reduction in pain) after 10 minutes of application. A new simple, selective and sensitive method for determination of lidocaine and prilocaine in human plasma was developed. Nanorap generated safe plasma levels of the drugs and satisfactory analgesic effect.
Resumo:
Abstract Objective. The aim of this study was to evaluate the alteration of human enamel bleached with high concentrations of hydrogen peroxide associated with different activators. Materials and methods. Fifty enamel/dentin blocks (4 × 4 mm) were obtained from human third molars and randomized divided according to the bleaching procedure (n = 10): G1 = 35% hydrogen peroxide (HP - Whiteness HP Maxx); G2 = HP + Halogen lamp (HL); G3 = HP + 7% sodium bicarbonate (SB); G4 = HP + 20% sodium hydroxide (SH); and G5 = 38% hydrogen peroxide (OXB - Opalescence Xtra Boost). The bleaching treatments were performed in three sessions with a 7-day interval between them. The enamel content, before (baseline) and after bleaching, was determined using an FT-Raman spectrometer and was based on the concentration of phosphate, carbonate, and organic matrix. Statistical analysis was performed using two-way ANOVA for repeated measures and Tukey's test. Results. The results showed no significant differences between time of analysis (p = 0.5175) for most treatments and peak areas analyzed; and among bleaching treatments (p = 0.4184). The comparisons during and after bleaching revealed a significant difference in the HP group for the peak areas of carbonate and organic matrix, and for the organic matrix in OXB and HP+SH groups. Tukey's analysis determined that the difference, peak areas, and the interaction among treatment, time and peak was statistically significant (p < 0.05). Conclusion. The association of activators with hydrogen peroxide was effective in the alteration of enamel, mainly with regards to the organic matrix.
Resumo:
Ammonium nitrate fuel oil (ANFO) is an explosive used in many civil applications. In Brazil, ANFO has unfortunately also been used in criminal attacks, mainly in automated teller machine (ATM) explosions. In this paper, we describe a detailed characterization of the ANFO composition and its two main constituents (diesel and a nitrate explosive) using high resolution and accuracy mass spectrometry performed on an FT-ICR-mass spectrometer with electrospray ionization (ESI(±)-FTMS) in both the positive and negative ion modes. Via ESI(-)-MS, an ion marker for ANFO was characterized. Using a direct and simple ambient desorption/ionization technique, i.e., easy ambient sonic-spray ionization mass spectrometry (EASI-MS), in a simpler, lower accuracy but robust single quadrupole mass spectrometer, the ANFO ion marker was directly detected from the surface of banknotes collected from ATM explosion theft.
Resumo:
The present research deals with two mural paintings made in 1947 with the fresco technique by Fulvio Pennacchi in the Catholic Chapel of the Hospital das Clínicas (São Paulo City, Brazil), namely the Virgin Annunciation and the Supper at Emmaus. This study regards the materials and painting techniques used by the artist, based on historical research,on in situ observations and laboratory analytical techniques (stereomicroscopy,scanning electron microscopy with an energy dispersive spectrometer, X-ray diffractometry, electron microprobe, images obtained with UV-light), aiming to improve the methods of characterization of objects of our cultural heritage, and to enhance its preservation accordingly. The results lead to the identification of the plaster components and of distinct layers in the frescoes, besides further information on grain size, impurities and textures, composition of pigments, and features of deterioration, such as efflorescences. The degree of degradation of the murals painting was assessed by this way. Our data suggest that a single layer of plaster was used by Pennacchi, as a common mortar with fine- and medium-grained aggregates. Differences in texture were obtained by adding gypsum to the plaster.
Resumo:
Gas-phase SiCl3+ ions undergo sequential solvolysis type reactions with water, methanol, ammonia, methylamine and propylene. Studies carried out in a Fourier Transform mass spectrometer reveal that these reactions are facile at 10-8 Torr and give rise to substituted chlorosilyl cations. Ab initio and DFT calculations reveal that these reactions proceed by addition of the silyl cation to the oxygen or nitrogen lone pair followed by a 1,3-H migration in the transition state. These transition states are calculated to lie below the energy of the reactants. By comparison, hydrolysis of gaseous CCl3+ is calculated to involve a substantial positive energy barrier.
Resumo:
The aim of this work was to evaluate the performance of femtosecond laser-induced breakdown spectroscopy (fs-LIBS) for the determination of elements in animal tissues. Sample pellets were prepared from certified reference materials, such as liver, kidney, muscle, hepatopancreas, and oyster, after cryogenic grinding assisted homogenization. Individual samples were placed in a two-axis computer-controlled translation stage that moved in the plane orthogonal to a beam originating from a Ti:Sapphire chirped-pulse amplification (CPA) laser system operating at 800 mu and producing a train of 840 mu J and 40 fs pulses at 90 Hz. The plasma emission was coupled into the optical fiber of a high-resolution intensified charge-coupled device (ICCD)-echelle spectrometer. Time-resolved characteristics of the laser-produced plasmas showed that the best results were obtained with delay times between 80 and 120 ns. Data obtained indicate both that it is a matrix-independent sampling process and that fs-LIBS can be used for the determination of Ca, Cu, Fe, K, Mg, Na, and P, but efforts must be made to obtain more appropriate detection limits for Al, Sr, and Zn.
Resumo:
This paper revisits the design of L and S band bridged loop-gap resonators (BLGRs) for electron paramagnetic resonance applications. A novel configuration is described and extensively characterized for resonance frequency and quality factor as a function of the geometrical parameters of the device. The obtained experimental results indicate higher values of the quality factor (Q) than previously reported in the literature, and the experimental analysis data should provide useful guidelines for BLGR design.
Resumo:
Chemical communication is of fundamental importance to maintain the integration of insect colonies. In honey bees, cuticular lipids differ in their composition between queens, workers and drones. Little is known, however, about cuticular hydrocarbons in stingless bees. We investigated chemical differences in cuticular hydrocarbons between different colonies, castes and individuals of different ages in Schwarziana quadripunctata. The epicuticle of the bees was extracted using the nonpolar solvent hexane, and was analyzed by means of a gas chromatograph coupled with a mass spectrometer. The identified compounds were alkanes, branched-alkanes and alkenes with chains of 19 to 33 carbon atoms. Discriminant analyses showed clear differences between all the groups analyzed. There were significant differences between bees from different colonies, workers of different age and between workers and virgin queens.
Resumo:
In this paper, the CoRoT Exoplanet Science Team announces its 14th discovery. Herein, we discuss the observations and analyses that allowed us to derive the parameters of this system: a hot Jupiter with a mass of 7.6 +/- 0.6 Jupiter masses orbiting a solar-type star (F9V) with a period of only 1.5 d, less than 5 stellar radii from its parent star. It is unusual for such a massive planet to have such a small orbit: only one other known higher mass exoplanet orbits with a shorter period.
Transiting exoplanets from the CoRoT space mission XV. CoRoT-15b: a brown-dwarf transiting companion
Resumo:
We report the discovery by the CoRoT space mission of a transiting brown dwarf orbiting a F7V star with an orbital period of 3.06 days. CoRoT-15b has a radius of 1.12(-0.15)(+0.30) R(Jup) and a mass of 63.3 +/- 4.1 M(Jup), and is thus the second transiting companion lying in the theoretical mass domain of brown dwarfs. CoRoT-15b is either very young or inflated compared to standard evolution models, a situation similar to that of M-dwarf stars orbiting close to solar-type stars. Spectroscopic constraints and an analysis of the lightcurve imply a spin period in the range 2.9-3.1 days for the central star, which is compatible with a double-synchronisation of the system.
Resumo:
The CoRoT exoplanet science team announces the discovery of CoRoT-11b, a fairly massive hot-Jupiter transiting a V = 12.9 mag F6 dwarf star (M(*) = 1.27 +/- 0.05 M(circle dot), R(*) = 1.37 +/- 0.03 R(circle dot), T(eff) = 6440 +/- 120 K), with an orbital period of P = 2.994329 +/- 0.000011 days and semi-major axis a = 0.0436 +/- 0.005 AU. The detection of part of the radial velocity anomaly caused by the Rossiter-McLaughlin effect shows that the transit-like events detected by CoRoT are caused by a planet-sized transiting object in a prograde orbit. The relatively high projected rotational velocity of the star (upsilon sin i(star) = 40 +/- 5 km s(-1)) places CoRoT-11 among the most rapidly rotating planet host stars discovered so far. With a planetary mass of M(p) = 2.33 +/- 0.34 M(Jup) and radius R(p) = 1.43 +/- 0.03 R(Jup), the resulting mean density of CoRoT-11b (rho(p) = 0.99 +/- 0.15 g/cm(3)) can be explained with a model for an inflated hydrogen-planet with a solar composition and a high level of energy dissipation in its interior.
Resumo:
Aims. We report the discovery of CoRoT-8b, a dense small Saturn-class exoplanet that orbits a K1 dwarf in 6.2 days, and we derive its orbital parameters, mass, and radius. Methods. We analyzed two complementary data sets: the photometric transit curve of CoRoT-8b as measured by CoRoT and the radial velocity curve of CoRoT-8 as measured by the HARPS spectrometer**. Results. We find that CoRoT-8b is on a circular orbit with a semi-major axis of 0.063 +/- 0.001 AU. It has a radius of 0.57 +/- 0.02 R(J), a mass of 0.22 +/- 0.03 M(J), and therefore a mean density of 1.6 +/- 0.1 g cm(-3). Conclusions. With 67% of the size of Saturn and 72% of its mass, CoRoT-8b has a density comparable to that of Neptune (1.76 g cm(-3)). We estimate its content in heavy elements to be 47-63 M(circle plus), and the mass of its hydrogen-helium envelope to be 7-23 M(circle plus). At 0.063 AU, the thermal loss of hydrogen of CoRoT-8b should be no more than similar to 0.1% over an assumed integrated lifetime of 3 Ga.
Resumo:
Context. It is debated whether the Milky Way bulge has characteristics more similar to those of a classical bulge than those of a pseudobulge. Detailed abundance studies of bulge stars are important when investigating the origin, history, and classification of the bulge. These studies provide constraints on the star-formation history, initial mass function, and differences between stellar populations. Not many similar studies have been completed because of the large distance and high variable visual extinction along the line-of-sight towards the bulge. Therefore, near-IR investigations can provide superior results. Aims. To investigate the origin of the bulge and study its chemical abundances determined from near-IR spectra for bulge giants that have already been investigated with optical spectra. The optical spectra also provide the stellar parameters that are very important to the present study. In particular, the important CNO elements are determined more accurately in the near-IR. Oxygen and other alpha elements are important for investigating the star-formation history. The C and N abundances are important for determining the evolutionary stage of the giants and the origin of C in the bulge. Methods. High-resolution, near-infrared spectra in the H band were recorded using the CRIRES spectrometer mounted on the Very Large Telescope. The CNO abundances are determined from the numerous molecular lines in the wavelength range observed. Abundances of the alpha elements Si, S, and Ti are also determined from the near-IR spectra. Results. The abundance ratios [O/Fe], [Si/Fe], and [S/Fe] are enhanced to metallicities of at least [Fe/H] = -0.3, after which they decline. This suggests that the Milky Way bulge experienced a rapid and early burst of star formation similar to that of a classical bulge. However, a similarity between the bulge trend and the trend of the local thick disk seems to be present. This similarity suggests that the bulge could have had a pseudobulge origin. The C and N abundances suggest that our giants are first-ascent red-giants or clump stars, and that the measured oxygen abundances are those with which the stars were born. Our [C/Fe] trend does not show any increase with [Fe/H], which is expected if W-R stars contributed substantially to the C abundances. No ""cosmic scatter"" can be traced around our observed abundance trends: the measured scatter is expected, given the observational uncertainties.