902 resultados para Multivariate measurement model
Resumo:
Mode of access: Internet.
Resumo:
Originally presented as the author's thesis, University of Chicago.
Resumo:
Objective. To assess the measurement properties of a simple index of symptom severity in osteoarthritis (OA) of the hips and knees. Methods. Both the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and the proposed new Comprehensive Osteoarthritis Test (COAT) instrument were completed weekly by 125 subjects in the context of a randomized, 12-week, 3 parallel-arm clinical trial. The reliabilities of the various scales were assessed on a weekly basis by use of Cronbach's alpha coefficients. The validity of the COAT total scale was assessed by correlation with the WOMAC total scale on a weekly basis with correlation coefficients, and in terms of the correlations between subject-level intercepts and slopes over time. The relative responsiveness of the WOMAC and COAT total scales was assessed using a multilevel (longitudinal) multivariate (WOMAC, COAT) linear model. Results. The WOMAC and COAT total scales were highly reliable (mean over weeks: WOMAC alpha = 0.98; COAT alpha = 0.97). The correlations between the WOMAC and COAT scales were very high (mean over weeks = 0.92; subject-level intercepts = 0.91, slopes = 0.88). The COAT total scale was significantly more responsive than the WOMAC total scale in the active treatment (34.8% improvement vs 26.8%; p = 0.002). Conclusion. The COAT total scale is simple to administer, reliable, valid, and responsive to treatment effects.
Resumo:
The sources of covariation among cognitive measures of Inspection Time, Choice Reaction Time, Delayed Response Speed and Accuracy, and IQ were examined in a classical twin design that included 245 monozygotic (MZ) and 298 dizygotic (DZ) twin pairs. Results indicated that a factor model comprising additive genetic and unique environmental effects was the most parsimonious. In this model, a general genetic cognitive factor emerged with factor loadings ranging from 0.28 to 0.64. Three other genetic factors explained the remaining genetic covariation between various speed and Delayed Response measures with IQ. However, a large proportion of the genetic variation in verbal (54%) and performance (25%) IQ was unrelated to these lower order cognitive measures. The independent genetic IQ variation may reflect information processes not captured by the elementary cognitive tasks, Inspection Time and Choice Reaction Time, nor our working memory task, Delayed Response. Unique environmental effects were mostly nonoverlapping, and partly represented test measurement error.
Resumo:
Ophthalmophakometric measurements of ocular surface radius of curvature and alignment were evaluated on physical model eyes encompassing a wide range of human ocular dimensions. The results indicated that defocus errors arising from imperfections in the ophthalmophakometer camera telecentricity and light source collimation were smaller than experimental errors. Reasonable estimates emerged for anterior lens surface radius of curvature (accuracy: 0.02–0.10 mm; precision 0.05–0.09 mm), posterior lens surface radius of curvature (accuracy: 0.10–0.55 mm; precision 0.06–0.20 mm), eye rotation (accuracy: 0.00–0.32°; precision 0.06–0.25°), lens tilt (accuracy: 0.00–0.33°; precision 0.05–0.98°) and lens decentration (accuracy: 0.00–0.07 mm; precision 0.00–0.07 mm).
Resumo:
The topic of my research is consumer brand equity (CBE). My thesis is that the success or otherwise of a brand is better viewed from the consumers’ perspective. I specifically focus on consumers as a unique group of stakeholders whose involvement with brands is crucial to the overall success of branding strategy. To this end, this research examines the constellation of ideas on brand equity that have hitherto been offered by various scholars. Through a systematic integration of the concepts and practices identified but these scholars (concepts and practices such as: competitiveness, consumer searching, consumer behaviour, brand image, brand relevance, consumer perceived value, etc.), this research identifies CBE as a construct that is shaped, directed and made valuable by the beliefs, attitudes and the subjective preferences of consumers. This is done by examining the criteria on the basis of which the consumers evaluate brands and make brand purchase decisions. Understanding the criteria by which consumers evaluate brands is crucial for several reasons. First, as the basis upon which consumers select brands changes with consumption norms and technology, understanding the consumer choice process will help in formulating branding strategy. Secondly, an understanding of these criteria will help in formulating a creative and innovative agenda for ‘new brand’ propositions. Thirdly, it will also influence firms’ ability to simulate and mould the plasticity of demand for existing brands. In examining these three issues, this thesis presents a comprehensive account of CBE. This is because the first issue raised in the preceding paragraph deals with the content of CBE. The second issue addresses the problem of how to develop a reliable and valid measuring instrument for CBE. The third issue examines the structural and statistical relationships between the factors of CBE and the consequences of CBE on consumer perceived value (CPV). Using LISREL-SIMPLIS 8.30, the study finds direct and significant influential links between consumer brand equity and consumer value perception.
Resumo:
Measuring variations in efficiency and its extension, eco-efficiency, during a restructuring period in different industries has always been a point of interest for regulators and policy makers. This paper assesses the impacts of restructuring of procurement in the Iranian power industry on the performance of power plants. We introduce a new slacks-based model for Malmquist-Luenberger (ML) Index measurement and apply it to the power plants to calculate the efficiency, eco-efficiency, and technological changes over the 8-year period (2003-2010) of restructuring in the power industry. The results reveal that although the restructuring had different effects on the individual power plants, the overall growth in the eco-efficiency of the sector was mainly due to advances in pure technology. We also assess the correlation between efficiency and eco-efficiency of the power plants, which indicates a close relationship between these two steps, thus lending support to the incorporation of environmental factors in efficiency analysis. © 2014 Elsevier Ltd.
Resumo:
The development of a new set of frost property measurement techniques to be used in the control of frost growth and defrosting processes in refrigeration systems was investigated. Holographic interferometry and infrared thermometry were used to measure the temperature of the frost-air interface, while a beam element load sensor was used to obtain the weight of a deposited frost layer. The proposed measurement techniques were tested for the cases of natural and forced convection, and the characteristic charts were obtained for a set of operational conditions. ^ An improvement of existing frost growth mathematical models was also investigated. The early stage of frost nucleation was commonly not considered in these models and instead an initial value of layer thickness and porosity was regularly assumed. A nucleation model to obtain the droplet diameter and surface porosity at the end of the early frosting period was developed. The drop-wise early condensation in a cold flat plate under natural convection to a hot (room temperature) and humid air was modeled. A nucleation rate was found, and the relation of heat to mass transfer (Lewis number) was obtained. It was found that the Lewis number was much smaller than unity, which is the standard value usually assumed for most frosting numerical models. The nucleation model was validated against available experimental data for the early nucleation and full growth stages of the frosting process. ^ The combination of frost top temperature and weight variation signals can now be used to control the defrosting timing and the developed early nucleation model can now be used to simulate the entire process of frost growth in any surface material. ^
Resumo:
Individuals of Hispanic origin are the nation's largest minority (13.4%). Therefore, there is a need for models and methods that are culturally appropriate for mental health research with this burgeoning population. This is an especially salient issue when applying family systems theories to Hispanics, who are heavily influenced by family bonds in a way that appears to be different from the more individualistic non-Hispanic White culture. Bowen asserted that his family systems' concept of differentiation of self, which values both individuality and connectedness, could be universally applied. However, there is a paucity of research systematically assessing the applicability of the differentiation of self construct in ethnic minority populations. ^ This dissertation tested a multivariate model of differentiation of self with a Hispanic sample. The manner in which the construct of differentiation of self was being assessed and how accurately it represented this particular ethnic minority group's functioning was examined. Additionally, the proposed model included key contextual variables (e.g., anxiety, relationship satisfaction, attachment and acculturation related variables) which have been shown to be related to the differentiation process. ^ The results from structural equation modeling (SEM) analyses confirmed and extended previous research, and helped to illuminate the complex relationships between key factors that need to be considered in order to better understand individuals with this cultural background. Overall results indicated that the manner in which Hispanic individuals negotiate the boundaries of interconnectedness with a sense of individual expression appears to be different from their non-Hispanic White counterparts in some important ways. These findings illustrate the need for research on Hispanic individuals that provides a more culturally sensitive framework. ^
Resumo:
Non-Destructive Testing (NDT) of deep foundations has become an integral part of the industry's standard manufacturing processes. It is not unusual for the evaluation of the integrity of the concrete to include the measurement of ultrasonic wave speeds. Numerous methods have been proposed that use the propagation speed of ultrasonic waves to check the integrity of concrete for drilled shaft foundations. All such methods evaluate the integrity of the concrete inside the cage and between the access tubes. The integrity of the concrete outside the cage remains to be considered to determine the location of the border between the concrete and the soil in order to obtain the diameter of the drilled shaft. It is also economic to devise a methodology to obtain the diameter of the drilled shaft using the Cross-Hole Sonic Logging system (CSL). Performing such a methodology using the CSL and following the CSL tests is performed and used to check the integrity of the inside concrete, thus allowing the determination of the drilled shaft diameter without having to set up another NDT device.^ This proposed new method is based on the installation of galvanized tubes outside the shaft across from each inside tube, and performing the CSL test between the inside and outside tubes. From the performed experimental work a model is developed to evaluate the relationship between the thickness of concrete and the ultrasonic wave properties using signal processing. The experimental results show that there is a direct correlation between concrete thicknesses outside the cage and maximum amplitude of the received signal obtained from frequency domain data. This study demonstrates how this new method to measuring the diameter of drilled shafts during construction using a NDT method overcomes the limitations of currently-used methods. ^ In the other part of study, a new method is proposed to visualize and quantify the extent and location of the defects. It is based on a color change in the frequency amplitude of the signal recorded by the receiver probe in the location of defects and it is called Frequency Tomography Analysis (FTA). Time-domain data is transferred to frequency-domain data of the signals propagated between tubes using Fast Fourier Transform (FFT). Then, distribution of the FTA will be evaluated. This method is employed after CSL has determined the high probability of an anomaly in a given area and is applied to improve location accuracy and to further characterize the feature. The technique has a very good resolution and clarifies the exact depth location of any void or defect through the length of the drilled shaft for the voids inside the cage. ^ The last part of study also evaluates the effect of voids inside and outside the reinforcement cage and corrosion in the longitudinal bars on the strength and axial load capacity of drilled shafts. The objective is to quantify the extent of loss in axial strength and stiffness of drilled shafts due to presence of different types of symmetric voids and corrosion throughout their lengths.^
Resumo:
Winner of a best paper award.
Resumo:
We introduce a discrete-time fibre channel model that provides an accurate analytical description of signal-signal and signal-noise interference with memory defined by the interplay of nonlinearity and dispersion. Also the conditional pdf of signal distortion, which captures non-circular complex multivariate symbol interactions, is derived providing the necessary platform for the analysis of channel statistics and capacity estimations in fibre optic links.