981 resultados para Multivariate Genetic Modeling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose. A descriptive analysis of glioma patients by race was carried out in order to better elucidate potential differences between races in demographics, treatment, characteristics, prognosis and survival. ^ Patients and Methods. Among 1,967 patients ≥ 18 years diagnosed with glioma seen between July 2000 and September 2006 at The University of Texas M.D. Anderson Cancer Center (UTMDACC). Data were collated from the UTMDACC Patient History Database (PHDB) and the UTMDACC Tumor Registry Database (TRDB). Chi-square analysis, uni- /multivariate Cox proportional hazards modeling and survival analysis were used to analyze differences by race. ^ Results. Demographic, treatment and histologic differences exist between races. Though risk differences were seen between races, race was not found to be a significant predictor in multivariate regression analysis after accounting for age, surgery, chemotherapy, radiation, tumor type as stratified by WHO tumor grade. Age was the most consistent predictor in risk for death. Overall survival by race was significantly different (p=0.0049) only in low-grade gliomas after adjustment for age although survival differences were very slight. ^ Conclusion. Among this cohort of glioma patients, age was the strongest predictor for survival. It is likely that survival is more influenced by age, time to treatment, tumor grade and surgical expertise rather than racial differences. However, age at diagnosis, gender ratios, histology and history of cancer differed significantly between race and genetic differences to this effect cannot be excluded. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radiotherapy has been a method of choice in cancer treatment for a number of years. Mathematical modeling is an important tool in studying the survival behavior of any cell as well as its radiosensitivity. One particular cell under investigation is the normal T-cell, the radiosensitivity of which may be indicative to the patient's tolerance to radiation doses.^ The model derived is a compound branching process with a random initial population of T-cells that is assumed to have compound distribution. T-cells in any generation are assumed to double or die at random lengths of time. This population is assumed to undergo a random number of generations within a period of time. The model is then used to obtain an estimate for the survival probability of T-cells for the data under investigation. This estimate is derived iteratively by applying the likelihood principle. Further assessment of the validity of the model is performed by simulating a number of subjects under this model.^ This study shows that there is a great deal of variation in T-cells survival from one individual to another. These variations can be observed under normal conditions as well as under radiotherapy. The findings are in agreement with a recent study and show that genetic diversity plays a role in determining the survival of T-cells. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. The mTOR pathway is commonly altered in human tumors and promotes cell survival and proliferation. Preliminary evidence suggests this pathway's involvement in chemoresistance to platinum and taxanes, first line therapy for epithelial ovarian cancer. A pathway-based approach was used to identify individual germline single nucleotide polymorphisms (SNPs) and cumulative effects of multiple genetic variants in mTOR pathway genes and their association with clinical outcome in women with ovarian cancer. ^ Methods. The case-series was restricted to 319 non-Hispanic white women with high grade ovarian cancer treated with surgery and platinum-based chemotherapy. 135 SNPs in 20 representative genes in the mTOR pathway were genotyped. Hazard ratios (HRs) for death and Odds ratios (ORs) for failure to respond to primary therapy were estimated for each SNP using the multivariate Cox proportional hazards model and multivariate logistic regression model, respectively, while adjusting for age, stage, histology and treatment sequence. A survival tree analysis of SNPs with a statistically significant association (p<0.05) was performed to identify higher order gene-gene interactions and their association with overall survival. ^ Results. There was no statistically significant difference in survival by tumor histology or treatment regimen. The median survival for the cohort was 48.3 months. Seven SNPs were significantly associated with decreased survival. Compared to those with no unfavorable genotypes, the HR for death increased significantly with the increasing number of unfavorable genotypes and women in the highest risk category had HR of 4.06 (95% CI 2.29–7.21). The survival tree analysis also identified patients with different survival patterns based on their genetic profiles. 13 SNPs on five different genes were found to be significantly associated with a treatment response, defined as no evidence of disease after completion of primary therapy. Rare homozygous genotype of SNP rs6973428 showed a 5.5-fold increased risk compared to the wild type carrying genotypes. In the cumulative effect analysis, the highest risk group (individuals with ≥8 unfavorable genotypes) was significantly less likely to respond to chemotherapy (OR=8.40, 95% CI 3.10–22.75) compared to the low risk group (≤4 unfavorable genotypes). ^ Conclusions. A pathway-based approach can demonstrate cumulative effects of multiple genetic variants on clinical response to chemotherapy and survival. Therapy targeting the mTOR pathway may modify outcome in select patients.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two molecular epidemiological studies were conducted to examine associations between genetic variation and risk of squamous cell carcinoma of the head and neck (SCCHN). In the first study, we hypothesized that genetic variation in p53 response elements (REs) may play roles in the etiology of SCCHN. We selected and genotyped five polymorphic p53 REs as well as a most frequently studied p53 codon 72 (Arg72Pro, rs1042522) polymorphism in 1,100 non-Hispanic White SCCHN patients and 1,122 age-and sex-matched cancer-free controls recruited at The University of Texas M. D. Anderson Cancer Center. In multivariate logistic regression analysis with adjustment for age, sex, smoking and drinking status, marital status and education level, we observed that the EOMES rs3806624 CC genotype had a significant effect of protection against SCCHN risk (adjusted odds ratio= 0.79, 95% confidence interval =0.64–0.98), compared with the -838TT+CT genotypes. Moreover, a significantly increased risk associated with the combined genotypes of p53 codon 72CC and EOMES -838TT+CT was observed, especially in the subgroup of non-oropharyneal cancer patients. The values of false-positive report probability were also calculated for significant findings. In the second study, we assessed the association between SCCHN risk and four potential regulatory single nucleotide polymorphisms (SNPs) of DEC1 (deleted in esophageal cancer 1) gene, a candidate tumor suppressor gene for esophageal cancer. After adjustment for age, sex, and smoking and drinking status, the variant -606CC (i.e., -249CC) homozygotes had a significantly reduced SCCHN risk (adjusted odds ratio = 0.71, 95% confidence interval = 0.52–0.99), compared with the -606TT homozygotes. Stratification analyses showed that a reduced risk associated with the -606CC genotype was more pronounced in subgroups of non-smokers, non-drinkers, younger subjects (defined as ≤ 57 years), carriers of TP53 Arg/Arg (rs1042522) genotype, patients with oropharyngeal cancer or late-stage SCCHN. Further in silico analysis revealed that the -249 T-to-C change led to a gain of a transcription factor binding site. Additional functional analysis showed that the -249T-to-C change significantly enhanced transcriptional activity of the DEC1 promoter and the DNA-protein binding activity. We conclude that the DEC1 promoter -249 T>C (rs2012775) polymorphism is functional, modulating susceptibility to SCCHN among non-Hispanic Whites. Additional large-scale, preferably population-based studies are needed to validate our findings.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction. Distant metastasis remains the leading cause of death among prostate cancer patients. Several genetic susceptibility loci associated with Prostate cancer have been identified by the Genome Wide Association Studies (GWAS). To date, few studies have explored the ability of these SNPs to identify metastatic prostate cancer. Based on the identification of genetic variants as predictors of aggressive disease, a case comparison study of prostate cancer patients was designed to explore the association of 96 GWAS single nucleotide polymorphisms (SNPs) with metastatic disease. ^ Method. 1242 histologically confirmed prostate cancer patients, with and without metastatic disease, were enrolled into the study. Data were collected from personal interviews, hospital database and abstraction of medical records. Ninety six SNPs identified from GWAS studies based on their associations with prostate cancer risk were genotyped in the study population. Univariate and multivariate logistic regression analyses were used to explore the relationships of the variants with metastatic prostate cancer in Whites and African American men. ^ Results. Four SNPs showed independent associations with metastatic prostate cancer (rs721048 in EHBP1 (2p15), rs3025039 in VEGF (6p12), rs11228565 in Intergenic(11q13.2) and rs2735839 in KLK3(19q13.33)) in the White population. For SNP rs2735839 in KLK3, genotype GA was 1.71 times as likely to be associated with metastatic prostate cancer diagnosis as genotype AA after adjusting for other significant SNPs and covariates (95% CI, 1.12-2.60; p=0.012). In men of African descent, three SNPs: rs1512268 in NKX3-1(8p21.2), rs12155172 in intergenic (7p15.3) & rs10486567 in JAZF1 (7p15.2) were positively associated with metastatic disease in the multivariate analysis. The strongest SNP was rs1512268 heterozygous genotype AG in NKX3-1(8p21.2) which was associated with 3.97-fold increased risk of metastatic prostate cancer diagnosis (95% CI, 1.69-9.34; p =0.002). ^ Conclusion. Genetic variants associated with metastatic prostate cancer were different in Whites and African American men. Given the high mortality rate recorded in men diagnosed with metastatic prostate tumor, further studies are needed to validate associations and establish their clinical application.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first manuscript, entitled "Time-Series Analysis as Input for Clinical Predictive Modeling: Modeling Cardiac Arrest in a Pediatric ICU" lays out the theoretical background for the project. There are several core concepts presented in this paper. First, traditional multivariate models (where each variable is represented by only one value) provide single point-in-time snapshots of patient status: they are incapable of characterizing deterioration. Since deterioration is consistently identified as a precursor to cardiac arrests, we maintain that the traditional multivariate paradigm is insufficient for predicting arrests. We identify time series analysis as a method capable of characterizing deterioration in an objective, mathematical fashion, and describe how to build a general foundation for predictive modeling using time series analysis results as latent variables. Building a solid foundation for any given modeling task involves addressing a number of issues during the design phase. These include selecting the proper candidate features on which to base the model, and selecting the most appropriate tool to measure them. We also identified several unique design issues that are introduced when time series data elements are added to the set of candidate features. One such issue is in defining the duration and resolution of time series elements required to sufficiently characterize the time series phenomena being considered as candidate features for the predictive model. Once the duration and resolution are established, there must also be explicit mathematical or statistical operations that produce the time series analysis result to be used as a latent candidate feature. In synthesizing the comprehensive framework for building a predictive model based on time series data elements, we identified at least four classes of data that can be used in the model design. The first two classes are shared with traditional multivariate models: multivariate data and clinical latent features. Multivariate data is represented by the standard one value per variable paradigm and is widely employed in a host of clinical models and tools. These are often represented by a number present in a given cell of a table. Clinical latent features derived, rather than directly measured, data elements that more accurately represent a particular clinical phenomenon than any of the directly measured data elements in isolation. The second two classes are unique to the time series data elements. The first of these is the raw data elements. These are represented by multiple values per variable, and constitute the measured observations that are typically available to end users when they review time series data. These are often represented as dots on a graph. The final class of data results from performing time series analysis. This class of data represents the fundamental concept on which our hypothesis is based. The specific statistical or mathematical operations are up to the modeler to determine, but we generally recommend that a variety of analyses be performed in order to maximize the likelihood that a representation of the time series data elements is produced that is able to distinguish between two or more classes of outcomes. The second manuscript, entitled "Building Clinical Prediction Models Using Time Series Data: Modeling Cardiac Arrest in a Pediatric ICU" provides a detailed description, start to finish, of the methods required to prepare the data, build, and validate a predictive model that uses the time series data elements determined in the first paper. One of the fundamental tenets of the second paper is that manual implementations of time series based models are unfeasible due to the relatively large number of data elements and the complexity of preprocessing that must occur before data can be presented to the model. Each of the seventeen steps is analyzed from the perspective of how it may be automated, when necessary. We identify the general objectives and available strategies of each of the steps, and we present our rationale for choosing a specific strategy for each step in the case of predicting cardiac arrest in a pediatric intensive care unit. Another issue brought to light by the second paper is that the individual steps required to use time series data for predictive modeling are more numerous and more complex than those used for modeling with traditional multivariate data. Even after complexities attributable to the design phase (addressed in our first paper) have been accounted for, the management and manipulation of the time series elements (the preprocessing steps in particular) are issues that are not present in a traditional multivariate modeling paradigm. In our methods, we present the issues that arise from the time series data elements: defining a reference time; imputing and reducing time series data in order to conform to a predefined structure that was specified during the design phase; and normalizing variable families rather than individual variable instances. The final manuscript, entitled: "Using Time-Series Analysis to Predict Cardiac Arrest in a Pediatric Intensive Care Unit" presents the results that were obtained by applying the theoretical construct and its associated methods (detailed in the first two papers) to the case of cardiac arrest prediction in a pediatric intensive care unit. Our results showed that utilizing the trend analysis from the time series data elements reduced the number of classification errors by 73%. The area under the Receiver Operating Characteristic curve increased from a baseline of 87% to 98% by including the trend analysis. In addition to the performance measures, we were also able to demonstrate that adding raw time series data elements without their associated trend analyses improved classification accuracy as compared to the baseline multivariate model, but diminished classification accuracy as compared to when just the trend analysis features were added (ie, without adding the raw time series data elements). We believe this phenomenon was largely attributable to overfitting, which is known to increase as the ratio of candidate features to class examples rises. Furthermore, although we employed several feature reduction strategies to counteract the overfitting problem, they failed to improve the performance beyond that which was achieved by exclusion of the raw time series elements. Finally, our data demonstrated that pulse oximetry and systolic blood pressure readings tend to start diminishing about 10-20 minutes before an arrest, whereas heart rates tend to diminish rapidly less than 5 minutes before an arrest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Essential biological processes are governed by organized, dynamic interactions between multiple biomolecular systems. Complexes are thus formed to enable the biological function and get dissembled as the process is completed. Examples of such processes include the translation of the messenger RNA into protein by the ribosome, the folding of proteins by chaperonins or the entry of viruses in host cells. Understanding these fundamental processes by characterizing the molecular mechanisms that enable then, would allow the (better) design of therapies and drugs. Such molecular mechanisms may be revealed trough the structural elucidation of the biomolecular assemblies at the core of these processes. Various experimental techniques may be applied to investigate the molecular architecture of biomolecular assemblies. High-resolution techniques, such as X-ray crystallography, may solve the atomic structure of the system, but are typically constrained to biomolecules of reduced flexibility and dimensions. In particular, X-ray crystallography requires the sample to form a three dimensional (3D) crystal lattice which is technically di‑cult, if not impossible, to obtain, especially for large, dynamic systems. Often these techniques solve the structure of the different constituent components within the assembly, but encounter difficulties when investigating the entire system. On the other hand, imaging techniques, such as cryo-electron microscopy (cryo-EM), are able to depict large systems in near-native environment, without requiring the formation of crystals. The structures solved by cryo-EM cover a wide range of resolutions, from very low level of detail where only the overall shape of the system is visible, to high-resolution that approach, but not yet reach, atomic level of detail. In this dissertation, several modeling methods are introduced to either integrate cryo-EM datasets with structural data from X-ray crystallography, or to directly interpret the cryo-EM reconstruction. Such computational techniques were developed with the goal of creating an atomic model for the cryo-EM data. The low-resolution reconstructions lack the level of detail to permit a direct atomic interpretation, i.e. one cannot reliably locate the atoms or amino-acid residues within the structure obtained by cryo-EM. Thereby one needs to consider additional information, for example, structural data from other sources such as X-ray crystallography, in order to enable such a high-resolution interpretation. Modeling techniques are thus developed to integrate the structural data from the different biophysical sources, examples including the work described in the manuscript I and II of this dissertation. At intermediate and high-resolution, cryo-EM reconstructions depict consistent 3D folds such as tubular features which in general correspond to alpha-helices. Such features can be annotated and later on used to build the atomic model of the system, see manuscript III as alternative. Three manuscripts are presented as part of the PhD dissertation, each introducing a computational technique that facilitates the interpretation of cryo-EM reconstructions. The first manuscript is an application paper that describes a heuristics to generate the atomic model for the protein envelope of the Rift Valley fever virus. The second manuscript introduces the evolutionary tabu search strategies to enable the integration of multiple component atomic structures with the cryo-EM map of their assembly. Finally, the third manuscript develops further the latter technique and apply it to annotate consistent 3D patterns in intermediate-resolution cryo-EM reconstructions. The first manuscript, titled An assembly model for Rift Valley fever virus, was submitted for publication in the Journal of Molecular Biology. The cryo-EM structure of the Rift Valley fever virus was previously solved at 27Å-resolution by Dr. Freiberg and collaborators. Such reconstruction shows the overall shape of the virus envelope, yet the reduced level of detail prevents the direct atomic interpretation. High-resolution structures are not yet available for the entire virus nor for the two different component glycoproteins that form its envelope. However, homology models may be generated for these glycoproteins based on similar structures that are available at atomic resolutions. The manuscript presents the steps required to identify an atomic model of the entire virus envelope, based on the low-resolution cryo-EM map of the envelope and the homology models of the two glycoproteins. Starting with the results of the exhaustive search to place the two glycoproteins, the model is built iterative by running multiple multi-body refinements to hierarchically generate models for the different regions of the envelope. The generated atomic model is supported by prior knowledge regarding virus biology and contains valuable information about the molecular architecture of the system. It provides the basis for further investigations seeking to reveal different processes in which the virus is involved such as assembly or fusion. The second manuscript was recently published in the of Journal of Structural Biology (doi:10.1016/j.jsb.2009.12.028) under the title Evolutionary tabu search strategies for the simultaneous registration of multiple atomic structures in cryo-EM reconstructions. This manuscript introduces the evolutionary tabu search strategies applied to enable a multi-body registration. This technique is a hybrid approach that combines a genetic algorithm with a tabu search strategy to promote the proper exploration of the high-dimensional search space. Similar to the Rift Valley fever virus, it is common that the structure of a large multi-component assembly is available at low-resolution from cryo-EM, while high-resolution structures are solved for the different components but lack for the entire system. Evolutionary tabu search strategies enable the building of an atomic model for the entire system by considering simultaneously the different components. Such registration indirectly introduces spatial constrains as all components need to be placed within the assembly, enabling the proper docked in the low-resolution map of the entire assembly. Along with the method description, the manuscript covers the validation, presenting the benefit of the technique in both synthetic and experimental test cases. Such approach successfully docked multiple components up to resolutions of 40Å. The third manuscript is entitled Evolutionary Bidirectional Expansion for the Annotation of Alpha Helices in Electron Cryo-Microscopy Reconstructions and was submitted for publication in the Journal of Structural Biology. The modeling approach described in this manuscript applies the evolutionary tabu search strategies in combination with the bidirectional expansion to annotate secondary structure elements in intermediate resolution cryo-EM reconstructions. In particular, secondary structure elements such as alpha helices show consistent patterns in cryo-EM data, and are visible as rod-like patterns of high density. The evolutionary tabu search strategy is applied to identify the placement of the different alpha helices, while the bidirectional expansion characterizes their length and curvature. The manuscript presents the validation of the approach at resolutions ranging between 6 and 14Å, a level of detail where alpha helices are visible. Up to resolution of 12 Å, the method measures sensitivities between 70-100% as estimated in experimental test cases, i.e. 70-100% of the alpha-helices were correctly predicted in an automatic manner in the experimental data. The three manuscripts presented in this PhD dissertation cover different computation methods for the integration and interpretation of cryo-EM reconstructions. The methods were developed in the molecular modeling software Sculptor (http://sculptor.biomachina.org) and are available for the scientific community interested in the multi-resolution modeling of cryo-EM data. The work spans a wide range of resolution covering multi-body refinement and registration at low-resolution along with annotation of consistent patterns at high-resolution. Such methods are essential for the modeling of cryo-EM data, and may be applied in other fields where similar spatial problems are encountered, such as medical imaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complex diseases such as cancer result from multiple genetic changes and environmental exposures. Due to the rapid development of genotyping and sequencing technologies, we are now able to more accurately assess causal effects of many genetic and environmental factors. Genome-wide association studies have been able to localize many causal genetic variants predisposing to certain diseases. However, these studies only explain a small portion of variations in the heritability of diseases. More advanced statistical models are urgently needed to identify and characterize some additional genetic and environmental factors and their interactions, which will enable us to better understand the causes of complex diseases. In the past decade, thanks to the increasing computational capabilities and novel statistical developments, Bayesian methods have been widely applied in the genetics/genomics researches and demonstrating superiority over some regular approaches in certain research areas. Gene-environment and gene-gene interaction studies are among the areas where Bayesian methods may fully exert its functionalities and advantages. This dissertation focuses on developing new Bayesian statistical methods for data analysis with complex gene-environment and gene-gene interactions, as well as extending some existing methods for gene-environment interactions to other related areas. It includes three sections: (1) Deriving the Bayesian variable selection framework for the hierarchical gene-environment and gene-gene interactions; (2) Developing the Bayesian Natural and Orthogonal Interaction (NOIA) models for gene-environment interactions; and (3) extending the applications of two Bayesian statistical methods which were developed for gene-environment interaction studies, to other related types of studies such as adaptive borrowing historical data. We propose a Bayesian hierarchical mixture model framework that allows us to investigate the genetic and environmental effects, gene by gene interactions (epistasis) and gene by environment interactions in the same model. It is well known that, in many practical situations, there exists a natural hierarchical structure between the main effects and interactions in the linear model. Here we propose a model that incorporates this hierarchical structure into the Bayesian mixture model, such that the irrelevant interaction effects can be removed more efficiently, resulting in more robust, parsimonious and powerful models. We evaluate both of the 'strong hierarchical' and 'weak hierarchical' models, which specify that both or one of the main effects between interacting factors must be present for the interactions to be included in the model. The extensive simulation results show that the proposed strong and weak hierarchical mixture models control the proportion of false positive discoveries and yield a powerful approach to identify the predisposing main effects and interactions in the studies with complex gene-environment and gene-gene interactions. We also compare these two models with the 'independent' model that does not impose this hierarchical constraint and observe their superior performances in most of the considered situations. The proposed models are implemented in the real data analysis of gene and environment interactions in the cases of lung cancer and cutaneous melanoma case-control studies. The Bayesian statistical models enjoy the properties of being allowed to incorporate useful prior information in the modeling process. Moreover, the Bayesian mixture model outperforms the multivariate logistic model in terms of the performances on the parameter estimation and variable selection in most cases. Our proposed models hold the hierarchical constraints, that further improve the Bayesian mixture model by reducing the proportion of false positive findings among the identified interactions and successfully identifying the reported associations. This is practically appealing for the study of investigating the causal factors from a moderate number of candidate genetic and environmental factors along with a relatively large number of interactions. The natural and orthogonal interaction (NOIA) models of genetic effects have previously been developed to provide an analysis framework, by which the estimates of effects for a quantitative trait are statistically orthogonal regardless of the existence of Hardy-Weinberg Equilibrium (HWE) within loci. Ma et al. (2012) recently developed a NOIA model for the gene-environment interaction studies and have shown the advantages of using the model for detecting the true main effects and interactions, compared with the usual functional model. In this project, we propose a novel Bayesian statistical model that combines the Bayesian hierarchical mixture model with the NOIA statistical model and the usual functional model. The proposed Bayesian NOIA model demonstrates more power at detecting the non-null effects with higher marginal posterior probabilities. Also, we review two Bayesian statistical models (Bayesian empirical shrinkage-type estimator and Bayesian model averaging), which were developed for the gene-environment interaction studies. Inspired by these Bayesian models, we develop two novel statistical methods that are able to handle the related problems such as borrowing data from historical studies. The proposed methods are analogous to the methods for the gene-environment interactions on behalf of the success on balancing the statistical efficiency and bias in a unified model. By extensive simulation studies, we compare the operating characteristics of the proposed models with the existing models including the hierarchical meta-analysis model. The results show that the proposed approaches adaptively borrow the historical data in a data-driven way. These novel models may have a broad range of statistical applications in both of genetic/genomic and clinical studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies feature subset selection in classification using a multiobjective estimation of distribution algorithm. We consider six functions, namely area under ROC curve, sensitivity, specificity, precision, F1 measure and Brier score, for evaluation of feature subsets and as the objectives of the problem. One of the characteristics of these objective functions is the existence of noise in their values that should be appropriately handled during optimization. Our proposed algorithm consists of two major techniques which are specially designed for the feature subset selection problem. The first one is a solution ranking method based on interval values to handle the noise in the objectives of this problem. The second one is a model estimation method for learning a joint probabilistic model of objectives and variables which is used to generate new solutions and advance through the search space. To simplify model estimation, l1 regularized regression is used to select a subset of problem variables before model learning. The proposed algorithm is compared with a well-known ranking method for interval-valued objectives and a standard multiobjective genetic algorithm. Particularly, the effects of the two new techniques are experimentally investigated. The experimental results show that the proposed algorithm is able to obtain comparable or better performance on the tested datasets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El sector ganadero está siendo gradualmente dominado por sistemas intensivos y especializados en los que los factores de producción están controlados y en los que los caracteres productivos son los criterios principales para la selección de especies y razas. Entretanto, muchos de los bienes y servicios que tradicionalmente suministraba el ganado, tales como los fertilizantes, la tracción animal o materias primas para la elaboración vestimenta y calzado están siendo reemplazados por productos industriales. Como consecuencia de ambos cambios, las razas seleccionadas intensivamente, las cuales están estrechamente ligadas a sistemas agrícolas de alta producción y altos insumos, han desplazado a muchas razas autóctonas, en las que la selección prácticamente ha cesado o es muy poco intensa. Actualmente existe una mayor conciencia social sobre la situación de las razas autóctonas y muchas funciones del ganado que previamente habían sido ignoradas están siendo reconocidas. Desde hace algunas décadas, se ha aceptado internacionalmente que las razas de ganado cumplen funciones económicas, socio-culturales, medioambientales y de seguridad alimentaria. Por ello, diferentes organismos internacionales han reconocido que la disminución de los recursos genéticos de animales domésticos (RGADs) es un problema grave y han recomendado su conservación. Aun así, la conservación de RGADs es un tema controvertido por la dificultad de valorar las funciones del ganado. Esta valoración es compleja debido que los RGADs tiene una doble naturaleza privada - pública. Como algunos economistas han subrayado, el ganado es un bien privado, sin embargo debido a algunas de sus funciones, también es un bien público. De esta forma, el aumento del conocimiento sobre valor de cada una de sus funciones facilitaría la toma de decisiones en relación a su conservación y desarrollo. Sin embargo, esta valoración es controvertida puesto que la importancia relativa de las funciones del ganado varía en función del momento, del lugar, de las especies y de las razas. El sector ganadero, debido a sus múltiples funciones, está influenciado por factores técnicos, medioambientales, sociales, culturales y políticos que están interrelacionados y que engloban a una enorme variedad de actores y procesos. Al igual que las funciones del ganado, los factores que afectan a su conservación y desarrollo están fuertemente condicionados por localización geográfica. Asimismo, estos factores pueden ser muy heterogéneos incluso dentro de una misma raza. Por otro lado, es razonable pensar que el ganadero es el actor principal de la conservación de razas locales. Actualmente, las razas locales están siendo Integration of socioeconomic and genetic aspects involved in the conservation of animal genetic resources 5 explotadas por ganaderos muy diversos bajo sistemas de producción también muy diferentes. Por todo ello, es de vital importancia comprender y evaluar el impacto que tienen las motivaciones, y el proceso de toma de decisiones de los ganaderos en la estructura genética de las razas. En esta tesis doctoral exploramos diferentes aspectos sociales, económicos y genéticos involucrados en la conservación de razas locales de ganado vacuno en Europa, como ejemplo de RGADs, esperando contribuir al entendimiento científico de este complejo tema. Nuestro objetivo es conseguir una visión global de los procesos subyacentes en la conservación y desarrollo de estas razas. Pretendemos ilustrar como se pueden utilizar métodos cuantitativos en el diseño y establecimiento de estrategias de conservación y desarrollo de RGADs objetivas y adecuadas. En primer lugar, exploramos el valor económico total (VET) del ganado analizando sus componentes públicos fuera de mercado usando como caso de estudio la raza vacuna Alistana-Sanabresa (AS). El VET de cualquier bien está formado por componentes de uso y de no-uso. Estos últimos incluyen el valor de opción, el valor de herencia y el valor de existencia. En el caso del ganado local, el valor de uso directo proviene de sus productos. Los valores de uso indirecto están relacionados con el papel que cumple las razas en el mantenimiento de los paisajes y cultura rural. El valor de opción se refiere a su futuro uso potencial y el valor de herencia al uso potencial de las generaciones venideras. Finalmente, el valor de existencia está relacionado con el bienestar que produce a la gente saber que existe un recurso específico. Nuestro objetivo fue determinar la importancia relativa que tienen los componentes fuera de mercado sobre el VET de la raza AS. Para ello evaluamos la voluntad de la gente a pagar por la conservación de la AS mediante experimentos de elección (EEs) a través de encuestas. Estos experimentos permiten valorar individualmente los distintos componentes del VET de cualquier bien. Los resultados los analizamos mediante de uso de modelos aleatorios logit. Encontramos que las funciones públicas de la raza AS tienen un valor significativo. Sus valores más importantes son el valor de uso indirecto como elemento cultural Zamorano y el valor de existencia (ambos representaron el 80% de VET). Además observamos que el valor que gente da a las funciones públicas de la razas de ganado dependen de sus características socioeconómicas. Los factores que condicionaron la voluntad a pagar para la conservación de la raza AS fueron el lugar de residencia (ciudad o pueblo), el haber visto animales de la raza o haber consumido sus productos y la actitud de los encuestados ante los conflictos entre el desarrollo económico y el medioambiente. Por otro lado, encontramos que no todo el mundo tiene una visión completa e integrada de todas las funciones públicas de la raza AS. Por este motivo, los programas o actividades de concienciación sobre su estado deberían hacer hincapié en este aspecto. La existencia de valores públicos de la raza AS implica que los ganaderos deberían recibir compensaciones económicas como pago por las funciones públicas que cumple su raza local. Las compensaciones asegurarían un tamaño de población que permitiría que la raza AS siga realizando estas funciones. Un mecanismo para ello podría ser el desarrollo del turismo rural relacionado con la raza. Esto aumentaría el valor de uso privado mientras que supondría un elemento añadido a las estrategias de conservación y desarrollo. No obstante, los ganaderos deben analizar cómo aprovechar los nichos de mercado existentes, así como mejorar la calidad de los productos de la raza prestando especial atención al etiquetado de los mismos. Una vez evaluada la importancia de las funciones públicas de las razas locales de ganado, analizamos la diversidad de factores técnicos, económicos y sociales de la producción de razas locales de ganado vacuno existente en Europa. Con este fin analizamos el caso de quince razas locales de ocho países en el contexto de un proyecto de colaboración internacional. Investigamos las diferencias entre los países para determinar los factores comunes clave que afectan a la viabilidad de las razas locales. Para ello entrevistamos mediante cuestionarios a un total de 355 ganaderos en las quince razas. Como indicador de viabilidad usamos los planes de los ganaderos de variación del tamaño de las ganaderías. Los cuestionarios incluían diferentes aspectos económicos, técnicos y sociales con potencial influencia en las dinámicas demográficas de las razas locales. Los datos recogidos los analizamos mediante distintas técnicas estadísticas multivariantes como el análisis discriminante y la regresión logística. Encontramos que los factores que afectan a la viabilidad de las razas locales en Europa son muy heterogéneos. Un resultado reseñable fue que los ganaderos de algunos países no consideran que la explotación de su raza tenga un alto valor social. Este hecho vuelve a poner de manifiesto la importancia de desarrollar programas Europeos de concienciación sobre la importancia de las funciones que cumplen las razas locales. Además los países analizados presentaron una alta variabilidad en cuanto a la importancia de los mercados locales en la distribución de los productos y en cuanto al porcentaje en propiedad del total de los pastos usados en las explotaciones. Este estudio reflejó la variabilidad de los sistemas y medios de producción (en el sentido socioeconómico, técnico y ecológico) que existe en Europa. Por ello hay que ser cautos en la implementación de las políticas comunes en los diferentes países. También encontramos que la variabilidad dentro de los países puede ser elevada debido a las diferencias entre razas, lo que implica que las políticas nacionales deber ser suficientemente flexibles para adaptarse a las peculiaridades de cada una de las razas. Por otro lado, encontramos una serie de factores comunes a la viabilidad de las razas en los distintos países; la edad de los ganaderos, la colaboración entre ellos y la apreciación social de las funciones culturales, medioambientales y sociales del ganado local. El envejecimiento de los ganaderos de razas locales no es solo un problema de falta de transferencia generacional, sino que también puede suponer una actitud más negativa hacia la inversión en las actividades ganaderas y en una menor capacidad de adaptación a los cambios del sector. La capacidad de adaptación de los ganaderos es un factor crucial en la viabilidad de las razas locales. Las estrategias y políticas de conservación comunes deben incluir las variables comunes a la viabilidad de las razas manteniendo flexibilidad suficiente para adaptarse a las especificidades nacionales. Estas estrategias y políticas deberían ir más allá de compensación económica a los ganaderos de razas locales por la menor productividad de sus razas. Las herramientas para la toma de decisiones ayudan a generar una visión amplia de la conservación y desarrollo de las razas locales. Estas herramientas abordan el diseño de estrategias de conservación y desarrollo de forma sistemática y estructurada. En la tercera parte de la tesis usamos una de estas herramientas, el análisis DAFO (Debilidades, Amenazas, Fortalezas y Oportunidades), con este propósito, reconociendo que la conservación de RGADs depende de los ganaderos. Desarrollamos un análisis DAFO cuantitativo y lo aplicamos a trece razas locales de ganado vacuno de seis países europeos en el contexto del proyecto de colaboración mencionado anteriormente. El método tiene cuatro pasos: 1) la definición del sistema; 2) la identificación y agrupación de los factores influyentes; 3) la cuantificación de la importancia de dichos factores y 4) la identificación y priorización de estrategias. Identificamos los factores utilizando multitud de agentes (multi-stakeholder appproach). Una vez determinados los factores se agruparon en una estructura de tres niveles. La importancia relativa de los cada uno de los factores para cada raza fue determinada por grupos de expertos en RGADs de los países integrados en el citado proyecto. Finalmente, desarrollamos un proceso de cuantificación para identificar y priorizar estrategias. La estructura de agrupación de factores permitió analizar el problema de la conservación desde el nivel general hasta el concreto. La unión de análisis específicos de cada una de las razas en un análisis DAFO común permitió evaluar la adecuación de las estrategias a cada caso concreto. Identificamos un total de 99 factores. El análisis reveló que mientras los factores menos importantes son muy consistentes entre razas, los factores y estrategias más relevantes son muy heterogéneos. La idoneidad de las estrategias fue mayor a medida que estas se hacían más generales. A pesar de dicha heterogeneidad, los factores influyentes y estrategias más importantes estaban ligados a aspectos positivos (fortalezas y oportunidades) lo que implica que el futuro de estas razas es prometedor. Los resultados de nuestro análisis también confirmaron la gran relevancia del valor cultural de estas razas. Las factores internos (fortalezas y debilidades) más importantes estaban relacionadas con los sistemas de producción y los ganaderos. Las oportunidades más relevantes estaban relacionadas con el desarrollo y marketing de nuevos productos mientras que las amenazas más importantes se encontraron a la hora de vender los productos actuales. Este resultado implica que sería fructífero trabajar en la motivación y colaboración entre ganaderos así como, en la mejora de sus capacidades. Concluimos que las políticas comunes europeas deberían centrarse en aspectos generales y ser los suficientemente flexibles para adaptarse a las singularidades de los países y las razas. Como ya se ha mencionado, los ganaderos juegan un papel esencial en la conservación y desarrollo de las razas autóctonas. Por ello es relevante entender que implicación puede tener la heterogeneidad de los mismos en la viabilidad de una raza. En la cuarta parte de la tesis hemos identificado tipos de ganaderos con el fin de entender cómo la relación entre la variabilidad de sus características socioeconómicas, los perfiles de las ganaderías y las dinámicas de las mismas. El análisis se ha realizado en un contexto sociológico, aplicando los conceptos de capital cultural y económico. Las tipologías se han determinado en función de factores socioeconómicos y culturales indicadores del capital cultural y capital económico de un individuo. Nuestro objetivo era estudiar si la tipología socioeconómica de los ganaderos afecta al perfil de su ganadería y a las decisiones que toman. Entrevistamos a 85 ganaderos de la raza Avileña-Negra Ibérica (ANI) y utilizamos los resultados de dichas entrevistas para ilustrar y testar el proceso. Definimos los tipos de ganaderos utilizando un análisis de clúster jerarquizado con un grupo de variables canónicas que se obtuvieron en función de cinco factores socioeconómicos: el nivel de educación del ganadero, el año en que empezó a ser ganadero de ANI, el porcentaje de los ingresos familiares que aporta la ganadería, el porcentaje de propiedad de la tierra de la explotación y la edad del ganadero. La tipología de los ganaderos de ANI resultó ser más compleja que en el pasado. Los resultados indicaron que los tipos de ganaderos variaban en muchos aspectos socioeconómicos y en los perfiles de sus Integration of socioeconomic and genetic aspects involved in the conservation of animal genetic resources 9 ganaderías. Los tipos de ganaderos determinados toman diferentes decisiones en relación a la modificación del tamaño de su ganadería y a sus objetivos de selección. Por otro lado, reaccionaron de forma diferente ante un hipotético escenario de reducción de las compensaciones económicas que les planteamos. En este estudio hemos visto que el capital cultural y el económico interactúan y hemos explicado como lo hacen en los distintos tipos de ganaderos. Por ejemplo, los ganaderos que poseían un mayor capital económico, capital cultural formal y capital cultural adquirido sobre la raza, eran los ganaderos cuyos animales tenían una mayor demanda por parte de otros ganaderos, lo cual podría responder a su mayor prestigio social dentro de la raza. Uno de los elementos claves para el futuro de la raza es si este prestigio responde a una superioridad genética de las animales. Esto ocurriría si los ganaderos utilizaran las herramientas que tienen a su disposición a la hora de seleccionar animales. Los tipos de ganaderos identificados mostraron también claras diferencias en sus formas de colaboración y en su reacción a una hipotética variación de las compensaciones económicas. Aunque algunos tipos de ganaderos mostraron un bajo nivel de dependencia a estas compensaciones, la mayoría se manifestaron altamente dependientes. Por ello cualquier cambio drástico en la política de ayudas puede comprometer el desarrollo de las razas autóctonas. La adaptación las políticas de compensaciones económicas a la heterogeneidad de los ganaderos podría aumentar la eficacia de las mismas por lo que sería interesante explorar posibilidades a este respecto. Concluimos destacando la necesidad de desarrollar políticas que tengan en cuenta la heterogeneidad de los ganaderos. Finalmente abordamos el estudio de la estructura genética de poblaciones ganaderas. Las decisiones de los ganaderos en relación a la selección de sementales y su número de descendientes configuran la estructura demográfica y genética de las razas. En la actualidad existe un interés renovado por estudiar las estructuras poblacionales debido a la influencia potencial de su estratificación sobre la predicción de valores genómicos y/o los análisis de asociación a genoma completo. Utilizamos dos métodos distintos, un algoritmo de clústeres basados en teoría de grafos (GCA) y un algoritmo de clustering bayesiano (STRUCTURE) para estudiar la estructura genética de la raza ANI. Prestamos especial atención al efecto de la presencia de parientes cercanos en la población y de la diferenciación genética entre subpoblaciones sobre el análisis de la estructura de la población. En primer lugar evaluamos el comportamiento de los dos algoritmos en poblaciones simuladas para posteriormente analizar los genotipos para 17 microsatélites de 13343 animales de 57 ganaderías distintas de raza ANI. La ANI es un ejemplo de raza con relaciones complejas. Por otro lado, utilizamos el archivo de pedigrí de la raza para estudiar el flujo de genes, calculando, entre otras cosas, la contribución de cada ganadería a la constitución genética de la raza. En el caso de las poblaciones simuladas, cuando el FST entre subpoblaciones fue suficientemente alto, ambos algoritmos, GCA y STRUCTURE, identificaron la misma estructura genética independientemente de que existieran o no relaciones familiares. Por el contrario, cuando el grado de diferenciación entre poblaciones fue bajo, el STRUCTURE identificó la estructura familiar mientras que GCA no permitió obtener ningún resultado concluyente. El GCA resultó ser un algoritmo más rápido y eficiente para de inferir la estructura genética en poblaciones con relaciones complejas. Este algoritmo también puede ser usado para reducir el número de clústeres a testar con el STRUTURE. En cuanto al análisis de la población de ANI, ambos algoritmos describieron la misma estructura, lo cual sugiere que los resultados son robustos. Se identificaron tres subpoblaciones diferenciadas que pudieran corresponderse con tres linajes distintos. Estos linajes estarían directamente relacionados con las ganaderías que han tenido una mayor contribución a la constitución genética de la raza. Por otro lado, hay un conjunto muy numeroso de individuos con una mezcla de orígenes. La información molecular describe una estructura estratificada de la población que se corresponde con la evolución demográfica de la raza. Es esencial analizar en mayor profundidad la composición de este último grupo de animales para determinar cómo afecta a la variabilidad genética de la población de ANI. SUMMARY Summary Livestock sector is gradually dominated by intensive and specialized systems where the production environment is controlled and the production traits are the main criteria for the selection of species and breeds. In the meantime, the traditional use of domestic animals for draught work, clothes and manure has been replaced by industrial products. As a consequence of both these changes, the intensively selected breeds closely linked with high-input highoutput production systems have displaced many native breeds where the selection has practically ceased or been very mild. People are now more aware of the state of endangerment among the native breeds and the previously ignored values of livestock are gaining recognition. For some decades now, the economic, socio-cultural, environmental and food security function of livestock breeds have been accepted worldwide and their loss has been recognized as a major problem. Therefore, the conservation of farm animal genetic resources (FAnGR) has been recommended. The conservation of FAnGR is controversial due to the complexity of the evaluation of its functions. This evaluation is difficult due to the nature of FAnGR both as private and public good. As some economists have highlighted, livestock animals are private goods, however, they are also public goods by their functions. Therefore, there is a need to increase the knowledge about the value of all livestock functions since to support the decision-making for the sustainable conservation and breeding of livestock. This is not straightforward since the relative importance of livestock functions depends on time, place, species and breed. Since livestock play a variety of roles, their production is driven by interrelated and everchanging economic, technical, environmental, social, cultural and political elements involving an enormous range of stakeholders. Not only FAnGR functions but also the importance of factors affecting the development and conservation of FAnGR can be very different across geographical areas. Furthermore, heterogeneity can be found even within breeds. Local breeds are nowadays raised by highly diverse farmers in equally diverse farms. It is quite reasonable to think that farmer is the major actor in the in situ conservation of livestock breeds. Thus, there is a need to understand the farmers’ motivations, decision making processes and the impact of their decisions on the genetic structure of breeds. In this PhD thesis we explore different social, economic and genetic aspects involved in the conservation of local cattle breeds, i.e. FAnGR, in Europe seeking to contribute to the scientific understanding of this complex issue. We aim to achieve a comprehensive view of the processes involved in the conservation and development of local cattle breeds and have made special efforts in discussing the implications of the research results in this respect. The final outcome of the thesis is to illustrate how quantitative methods can be exploited in designing and establishing sound strategies and programmes for the conservation and development of local livestock breeds. Firstly we explored the public non-market attributes of the total economic value (TEV) of livestock, using the Spanish Alistana-Sanabresa (AS) cattle breed as a case study. Total economic value of any good comprises both use and non-use components, where the latter include option, bequest and existence values. For livestock, the direct use values are mainly stemming from production outputs. Indirect use values relate to the role of livestock as a maintainer of rural culture and landscape. The option value is related to the potential use of livestock, the bequest values relate to the value associated with the inheritance of the resources to future generation and the existence values relate to the utility perceived by people from knowing that specific resources exist. We aimed to determine the relative importance of the non-market components of the TEV of the AS breed, the socio-economic variables that influence how people value the different components of TEV and to assess the implications of the Spanish national conservation strategy for the AS breed. To do so, we used a choice experiment (CE) approach and applied the technique to assess people’s willingness to pay (WTP) for the conservation of AS breed. The use of CE allows the valuation of the individual components of TEV for a given good. We analysed the choice data using a random parameter logit (RPL) model. AS breed was found to have a significant public good value. Its most important values were related to the indirect use value due to the maintenance of Zamorian culture and the existence value (both represent over 80% of its TEV). There were several socioeconomic variables influencing people’s valuation of the public service of the breed. In the case of AS breed, the place of living (city or rural area), having seen animals of the breed, having eaten breed products and the respondents’ attitude towards economic development – environment conflicts do influence people’s WTP for AS conservation. We also found that people do not have a complete picture of all the functions and roles that AS breed as AnGR. Therefore, the actions for increasing awareness of AS should go to that direction. The farmers will need incentives to exploit some of the public goods values and maintain the breed population size at socially desirable levels. One such mechanism could be related to the development of agritourism, which would enhance the private good value and provide an important addition to the conservation and utilisation strategy. However, the farmers need a serious evaluation on how to invest in niche product development or how to improve product quality and brand recognition. Using the understanding on the importance of the public function of local cattle we tried to depict the current diversity regarding technical, economic and social factors found in local cattle farming across Europe. To do so we focused in an international collaborative project on the case of fifteen local cattle breeds in eight European countries. We investigated the variation among the countries to detect the common key elements, which affect the viability of local breeds. We surveyed with interviews a total of 355 farms across the fifteen breeds. We used the planned herd size changes by the farmer as an indicator of breed viability. The questionnaire included several economic, technical and social aspects with potential influence on breeds’ demographic trends. We analysed the data using multivariate statistical techniques, such as discriminat analysis and logistic regression. The factors affecting a local breed’s viability were highly heterogeneous across Europe. In some countries, farmers did not recognise any high social value attached to keeping a local cattle breed. Hence there is a need to develop communication programmes across EU countries making people aware about the diversity and importance of values associated to raising local breeds. The countries were also very variable regarding the importance of local markets and the percentage of farm land owned by the farmers. Despite the country specificities, there were also common factors affecting the breed viability across Europe. The factors were from different grounds, from social, such as the age of the farmer and the social appreciation of their work, to technicalorganizational, such as the farmers’ attitude to collaborating with each other. The heterogeneity found reflects the variation in breeding systems and production environment (in the socioeconomic, technical and ecological sense) present in Europe. Therefore, caution should be taken in implementing common policies at the country level. Variability could also be rather high within countries due to breed specificities. Therefore, the national policies should be flexible to adapt to the specificities. The variables significantly associated with breed viability should be positively incorporated in the conservation strategies, and considered in developing common and/or national policies. The strategy preparation and policy planning should go beyond the provision of a general economic support to compensate farmers for the lower profitability of local breeds. Of particular interest is the observation that the opportunity for farmer collaboration and the appreciation by the society of the cultural, environmental and social role of local cattle farming were positively associated with the breed survival. In addition, farmer's high age is not only a problem of poor generation transfer but it is also a problem because it might lead to a lower attitude to investing in farming activities and to a lower ability to adapt to environment changes. The farmers’ adaptation capability may be a key point for the viability of local breeds. Decision making tools can help to get a comprehensive view on the conservation and development of local breeds. It allows us to use a systematic and structured approach for identifying and prioritizing conservation and development strategies. We used SWOT (Strengths, Weaknesses Opportunities and Threats) analysis for this purpose and recognized that many conservation and development projects rely on farmers. We developed a quantified SWOT method and applied it in the aforementioned collaborative research to a set of thirteen cattle breeds in six European countries. The method has four steps: definition of the system, identification and grouping of the driving factors, quantification of the importance of driving factors and identification and prioritization of the strategies. The factors were determined following a multi-stakeholder approach and grouped with a three level structure. FAnGR expert groups ranked the factors and a quantification process was implemented to identify and prioritize strategies. The structure of the SWOT analysis allowed analyzing the conservation problem from general down to specific perspectives. Joining breed specific analyses into a common SWOT analysis permitted comparison of breed cases across countries. We identified 99 driving factors across breeds. The across breed analysis revealed that irrelevant factors were consistent. There was high heterogeneity among the most relevant factors and strategies. The strategies increased eligibility as they lost specificity. Although the situation was very heterogeneous, the most promising factors and strategies were linked to the positive aspects (Strengths and Opportunities). Therefore, the future of the studied local breed is promising. The results of our analysis also confirmed the high relevance of the cultural value of the breeds. The most important internal factors (strengths and weaknesses) were related farmers and production systems. The most important opportunities were found in developing and marketing new products, while the most relevant threats were found in selling the current conventional products. In this regard, it should be fruitful to work on farmers’ motivation, collaboration, and capacity building. We conclude that European policies should focus on general aspects and be flexible enough to be adapted to the country and breed specificities. As mentioned, farmers have a key role in the conservation and development of a local cattle breed. Therefore, it is very relevant to understand the implications of farmer heterogeneity within a breed for its viability. In the fourth part of the thesis, we developed a general farmer typology to help analyzing the relations between farmer features and farm profiles, herd dynamics and farmers’ decision making. In the analysis we applied and used the sociological framework of economic and cultural capital and studied how the determined farmer types were linked to farm profiles and breeding decisions, among others. The typology was based on measurable socioeconomic factors indicating the economic and cultural capital of farmers. A group of 85 farmers raising the Spanish Avileña-Negra Ibérica (ANI) local cattle breed was used to illustrate and test the procedure. The farmer types were defined by a hierarchical cluster analysis with a set of canonical variables derived from the following five the socioeconomic factors: the formal educational level of the farmer, the year the farmer started keeping the ANI breed, the percentage of the total family income covered by the farm, the percentage of the total farm land owned by the farmer and the farmer’s age. The present ANI farmer types were much more complex than what they were in the past. We found that the farmer types differed in many socioeconomic aspects and in the farms profile. Furthermore, the types also differentiate farmers with respect to decisions about changing the farm size, breeding aims and stated reactions towards hypothetical subsidy variation. We have verified that economic and cultural capitals are not independent and further showed how they are interacting in the different farmer types. The farmers related to the types with high economic, institutionalized and embodied cultural capitals had a higher demand of breeding animals from others farmers of the breed, which may be related to the higher social prestige within the breed. One of the key implications of this finding for the future of the breed is whether or not the prestige of farmers is related to genetic superiority of their animals, what is to say, that it is related with a sound use of tools that farmers have available to make selection decisions. The farmer types differed in the form of collaboration and in the reactions to the hypothetical variation in subsidies. There were farmers with low dependency on subsidies, while most of them are highly dependent on subsidies. Therefore, any drastic change in the subsidy programme might have influence on the development of local breeds. The adaptation of these programme to the farmers’ heterogeneity might increase its efficacy, thus it would be interesting to explore ways of doing it. We conclude highlighting the need to have a variety of policies, which take into account the heterogeneity among the farmers. To finish we dealt with the genetic structure of livestock populations. Farmers’ decisions on the breeding animals and their progeny numbers shape the demographic and genetic structure of the breeds. Nowadays there is a renovated interest in studying the population structure since it can bias the prediction of genomic breeding values and genome wide association studies. We determined the genetic structure of ANI breed using two different methods, a graphical clustering algorithm (GCA) and a Bayesian clustering algorithm (STRUCTURE) were used. We paid particular attention to the influence that the presence of closely related individuals and the genetic differentiation of subpopulations may have on the inferences about the population structure. We first evaluated the performance of the algorithms in simulated populations. Then we inferred the genetic structure of the Spanish cattle breed ANI analysing a data set of 13343 animals (genotyped for 17 microsatellites) from 57 herds. ANI breed is an example of a population with complex relationships. We used the herdbook to study the gene flow, estimation among other things, the contribution of different herds to the genetic composition of the ANI breed. For the simulated scenarios, when FST among subpopulations was sufficiently high, both algorithms consistently inferred the correct structure regardless of the presence of related individuals. However, when the genetic differentiation among subpopulations was low, STRUCTURE identified the family based structure while GCA did not provide any consistent picture. The GCA was a fast and efficient method to infer genetic structure to determine the hidden core structure of a population with complex history and relationships. GCA could also be used to narrow down the number of clusters to be tested by STRUCTURE. Both, STRUCTURE and GCA describe a similar structure for the ANI breed suggesting that the results are robust. ANI population was found to have three genetically differentiated clusters that could correspond to three genetic lineages. These are directly related to the herds with a major contribution to the breed. In addition, ANI breed has also a large pool made of individuals with an admixture of origins. The genetic structure of ANI, assessed by molecular information, shows a stratification that corresponds to the demographic evolution of the breed. It will be of great importance to learn more about the composition of the pool and study how it is related to the existing genetic variability of the breed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The diversity of bibliometric indices today poses the challenge of exploiting the relationships among them. Our research uncovers the best core set of relevant indices for predicting other bibliometric indices. An added difficulty is to select the role of each variable, that is, which bibliometric indices are predictive variables and which are response variables. This results in a novel multioutput regression problem where the role of each variable (predictor or response) is unknown beforehand. We use Gaussian Bayesian networks to solve the this problem and discover multivariate relationships among bibliometric indices. These networks are learnt by a genetic algorithm that looks for the optimal models that best predict bibliometric data. Results show that the optimal induced Gaussian Bayesian networks corroborate previous relationships between several indices, but also suggest new, previously unreported interactions. An extended analysis of the best model illustrates that a set of 12 bibliometric indices can be accurately predicted using only a smaller predictive core subset composed of citations, g-index, q2-index, and hr-index. This research is performed using bibliometric data on Spanish full professors associated with the computer science area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An integrated understanding of molecular and developmental biology must consider the large number of molecular species involved and the low concentrations of many species in vivo. Quantitative stochastic models of molecular interaction networks can be expressed as stochastic Petri nets (SPNs), a mathematical formalism developed in computer science. Existing software can be used to define molecular interaction networks as SPNs and solve such models for the probability distributions of molecular species. This approach allows biologists to focus on the content of models and their interpretation, rather than their implementation. The standardized format of SPNs also facilitates the replication, extension, and transfer of models between researchers. A simple chemical system is presented to demonstrate the link between stochastic models of molecular interactions and SPNs. The approach is illustrated with examples of models of genetic and biochemical phenomena where the UltraSAN package is used to present results from numerical analysis and the outcome of simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A central event in the eukaryotic cell cycle is the decision to commence DNA replication (S phase). Strict controls normally operate to prevent repeated rounds of DNA replication without intervening mitoses (“endoreplication”) or initiation of mitosis before DNA is fully replicated (“mitotic catastrophe”). Some of the genetic interactions involved in these controls have recently been identified in yeast. From this evidence we propose a molecular mechanism of “Start” control in Schizosaccharomyces pombe. Using established principles of biochemical kinetics, we compare the properties of this model in detail with the observed behavior of various mutant strains of fission yeast: wee1− (size control at Start), cdc13Δ and rum1OP (endoreplication), and wee1− rum1Δ (rapid division cycles of diminishing cell size). We discuss essential features of the mechanism that are responsible for characteristic properties of Start control in fission yeast, to expose our proposal to crucial experimental tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inteins are protein-splicing elements, most of which contain conserved sequence blocks that define a family of homing endonucleases. Like group I introns that encode such endonucleases, inteins are mobile genetic elements. Recent crystallography and computer modeling studies suggest that inteins consist of two structural domains that correspond to the endonuclease and the protein-splicing elements. To determine whether the bipartite structure of inteins is mirrored by the functional independence of the protein-splicing domain, the entire endonuclease component was deleted from the Mycobacterium tuberculosis recA intein. Guided by computer modeling studies, and taking advantage of genetic systems designed to monitor intein function, the 440-aa Mtu recA intein was reduced to a functional mini-intein of 137 aa. The accuracy of splicing of several mini-inteins was verified. This work not only substantiates structure predictions for intein function but also supports the hypothesis that, like group I introns, mobile inteins arose by an endonuclease gene invading a sequence encoding a small, functional splicing element.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Death-associated protein kinase (DAP-kinase) is a Ca+2/calmodulin-regulated serine/threonine kinase with a multidomain structure that participates in apoptosis induced by a variety of signals. To identify regions in this protein that are critical for its proapoptotic activity, we performed a genetic screen on the basis of functional selection of short DAP-kinase-derived fragments that could protect cells from apoptosis by acting in a dominant-negative manner. We expressed a library of randomly fragmented DAP-kinase cDNA in HeLa cells and treated these cells with IFN-γ to induce apoptosis. Functional cDNA fragments were recovered from cells that survived the selection, and those in the sense orientation were examined further in a secondary screen for their ability to protect cells from DAP-kinase-dependent tumor necrosis factor-α-induced apoptosis. We isolated four biologically active peptides that mapped to the ankyrin repeats, the “linker” region, the death domain, and the C-terminal tail of DAP-kinase. Molecular modeling of the complete death domain provided a structural basis for the function of the death-domain-derived fragment by suggesting that the protective fragment constitutes a distinct substructure. The last fragment, spanning the C-terminal serine-rich tail, defined a new regulatory region. Ectopic expression of the tail peptide (17 amino acids) inhibited the function of DAP-kinase, whereas removal of this region from the complete protein caused enhancement of the killing activity, indicating that the C-terminal tail normally plays a negative regulatory role. Altogether, this unbiased screen highlighted functionally important regions in the protein and revealed an additional level of regulation of DAP-kinase apoptotic function that does not affect the catalytic activity.