803 resultados para Multiprocessor computer architectures
Resumo:
Nos últimos anos começaram a ser vulgares os computadores dotados de multiprocessadores e multi-cores. De modo a aproveitar eficientemente as novas características desse hardware começaram a surgir ferramentas para facilitar o desenvolvimento de software paralelo, através de linguagens e frameworks, adaptadas a diferentes linguagens. Com a grande difusão de redes de alta velocidade, tal como Gigabit Ethernet e a última geração de redes Wi-Fi, abre-se a oportunidade de, além de paralelizar o processamento entre processadores e cores, poder em simultâneo paralelizá-lo entre máquinas diferentes. Ao modelo que permite paralelizar processamento localmente e em simultâneo distribuí-lo para máquinas que também têm capacidade de o paralelizar, chamou-se “modelo paralelo distribuído”. Nesta dissertação foram analisadas técnicas e ferramentas utilizadas para fazer programação paralela e o trabalho que está feito dentro da área de programação paralela e distribuída. Tendo estes dois factores em consideração foi proposta uma framework que tenta aplicar a simplicidade da programação paralela ao conceito paralelo distribuído. A proposta baseia-se na disponibilização de uma framework em Java com uma interface de programação simples, de fácil aprendizagem e legibilidade que, de forma transparente, é capaz de paralelizar e distribuir o processamento. Apesar de simples, existiu um esforço para a tornar configurável de forma a adaptar-se ao máximo de situações possível. Nesta dissertação serão exploradas especialmente as questões relativas à execução e distribuição de trabalho, e a forma como o código é enviado de forma automática pela rede, para outros nós cooperantes, evitando assim a instalação manual das aplicações em todos os nós da rede. Para confirmar a validade deste conceito e das ideias defendidas nesta dissertação foi implementada esta framework à qual se chamou DPF4j (Distributed Parallel Framework for JAVA) e foram feitos testes e retiradas métricas para verificar a existência de ganhos de performance em relação às soluções já existentes.
Resumo:
Multi-agent architectures are well suited for complex inherently distributed problem solving domains. From the many challenging aspects that arise within this framework, a crucial one emerges: how to incorporate dynamic and conflicting agent beliefs? While the belief revision activity in a single agent scenario is concentrated on incorporating new information while preserving consistency, in a multi-agent system it also has to deal with possible conflicts between the agents perspectives. To provide an adequate framework, each agent, built as a combination of an assumption based belief revision system and a cooperation layer, was enriched with additional features: a distributed search control mechanism allowing dynamic context management, and a set of different distributed consistency methodologies. As a result, a Distributed Belief Revision Testbed (DiBeRT) was developed. This paper is a preliminary report presenting some of DiBeRT contributions: a concise representation of external beliefs; a simple and innovative methodology to achieve distributed context management; and a reduced inter-agent data exchange format.
Resumo:
Environmental management is a complex task. The amount and heterogeneity of the data needed for an environmental decision making tool is overwhelming without adequate database systems and innovative methodologies. As far as data management, data interaction and data processing is concerned we here propose the use of a Geographical Information System (GIS) whilst for the decision making we suggest a Multi-Agent System (MAS) architecture. With the adoption of a GIS we hope to provide a complementary coexistence between heterogeneous data sets, a correct data structure, a good storage capacity and a friendly user’s interface. By choosing a distributed architecture such as a Multi-Agent System, where each agent is a semi-autonomous Expert System with the necessary skills to cooperate with the others in order to solve a given task, we hope to ensure a dynamic problem decomposition and to achieve a better performance compared with standard monolithical architectures. Finally, and in view of the partial, imprecise, and ever changing character of information available for decision making, Belief Revision capabilities are added to the system. Our aim is to present and discuss an intelligent environmental management system capable of suggesting the more appropriate land-use actions based on the existing spatial and non-spatial constraints.
Resumo:
Recent integrated circuit technologies have opened the possibility to design parallel architectures with hundreds of cores on a single chip. The design space of these parallel architectures is huge with many architectural options. Exploring the design space gets even more difficult if, beyond performance and area, we also consider extra metrics like performance and area efficiency, where the designer tries to design the architecture with the best performance per chip area and the best sustainable performance. In this paper we present an algorithm-oriented approach to design a many-core architecture. Instead of doing the design space exploration of the many core architecture based on the experimental execution results of a particular benchmark of algorithms, our approach is to make a formal analysis of the algorithms considering the main architectural aspects and to determine how each particular architectural aspect is related to the performance of the architecture when running an algorithm or set of algorithms. The architectural aspects considered include the number of cores, the local memory available in each core, the communication bandwidth between the many-core architecture and the external memory and the memory hierarchy. To exemplify the approach we did a theoretical analysis of a dense matrix multiplication algorithm and determined an equation that relates the number of execution cycles with the architectural parameters. Based on this equation a many-core architecture has been designed. The results obtained indicate that a 100 mm(2) integrated circuit design of the proposed architecture, using a 65 nm technology, is able to achieve 464 GFLOPs (double precision floating-point) for a memory bandwidth of 16 GB/s. This corresponds to a performance efficiency of 71 %. Considering a 45 nm technology, a 100 mm(2) chip attains 833 GFLOPs which corresponds to 84 % of peak performance These figures are better than those obtained by previous many-core architectures, except for the area efficiency which is limited by the lower memory bandwidth considered. The results achieved are also better than those of previous state-of-the-art many-cores architectures designed specifically to achieve high performance for matrix multiplication.
Resumo:
In this work a biofunctional composite coating architecture for controlled corrosion activity and enhanced cellular adhesion of AZ31 Mg alloys is proposed. The composite coating consists of a polycaprolactone (PCL) matrix modified with nanohydroxyapatite (HA) applied over a nanometric layer of polyetherimide (PEI). The protective properties of the coating were studied by electrochemical impedance spectroscopy (EIS), a non-disturbing technique, and the coating morphology was investigated by field emission scanning electron microscopy (FE-SEM). The results show that the composite coating protects the AZ31 substrate. The barrier properties of the coating can be optimized by changing the PCL concentration. The presence of nanohydroxyapatite particles influences the coating morphology and decreases the corrosion resistance. The biocompatibility was assessed by studying the response of osteoblastic cells on coated samples through resazurin assay, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The results show that the polycaprolactone to hydroxyapatite ratio affects the cell behavior and that the presence of hydroxyapatite induces high osteoblastic differentiation. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We propose a fractional model for computer virus propagation. The model includes the interaction between computers and removable devices. We simulate numerically the model for distinct values of the order of the fractional derivative and for two sets of initial conditions adopted in the literature. We conclude that fractional order systems reveal richer dynamics than the classical integer order counterpart. Therefore, fractional dynamics leads to time responses with super-fast transients and super-slow evolutions towards the steady-state, effects not easily captured by the integer order models.
Resumo:
Composition is a practice of key importance in software engineering. When real-time applications are composed, it is necessary that their timing properties (such as meeting the deadlines) are guaranteed. The composition is performed by establishing an interface between the application and the physical platform. Such an interface typically contains information about the amount of computing capacity needed by the application. For multiprocessor platforms, the interface should also present information about the degree of parallelism. Several interface proposals have recently been put forward in various research works. However, those interfaces are either too complex to be handled or too pessimistic. In this paper we propose the generalized multiprocessor periodic resource model (GMPR) that is strictly superior to the MPR model without requiring a too detailed description. We then derive a method to compute the interface from the application specification. This method has been implemented in Matlab routines that are publicly available.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologias da Universidade Nova de Lisboa para a obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Hyperspectral imaging has become one of the main topics in remote sensing applications, which comprise hundreds of spectral bands at different (almost contiguous) wavelength channels over the same area generating large data volumes comprising several GBs per flight. This high spectral resolution can be used for object detection and for discriminate between different objects based on their spectral characteristics. One of the main problems involved in hyperspectral analysis is the presence of mixed pixels, which arise when the spacial resolution of the sensor is not able to separate spectrally distinct materials. Spectral unmixing is one of the most important task for hyperspectral data exploitation. However, the unmixing algorithms can be computationally very expensive, and even high power consuming, which compromises the use in applications under on-board constraints. In recent years, graphics processing units (GPUs) have evolved into highly parallel and programmable systems. Specifically, several hyperspectral imaging algorithms have shown to be able to benefit from this hardware taking advantage of the extremely high floating-point processing performance, compact size, huge memory bandwidth, and relatively low cost of these units, which make them appealing for onboard data processing. In this paper, we propose a parallel implementation of an augmented Lagragian based method for unsupervised hyperspectral linear unmixing on GPUs using CUDA. The method called simplex identification via split augmented Lagrangian (SISAL) aims to identify the endmembers of a scene, i.e., is able to unmix hyperspectral data sets in which the pure pixel assumption is violated. The efficient implementation of SISAL method presented in this work exploits the GPU architecture at low level, using shared memory and coalesced accesses to memory.
Resumo:
This article introduces schedulability analysis for global fixed priority scheduling with deferred preemption (gFPDS) for homogeneous multiprocessor systems. gFPDS is a superset of global fixed priority pre-emptive scheduling (gFPPS) and global fixed priority non-pre-emptive scheduling (gFPNS). We show how schedulability can be improved using gFPDS via appropriate choice of priority assignment and final non-pre-emptive region lengths, and provide algorithms which optimize schedulability in this way. Via an experimental evaluation we compare the performance of multiprocessor scheduling using global approaches: gFPDS, gFPPS, and gFPNS, and also partitioned approaches employing FPDS, FPPS, and FPNS on each processor.
Resumo:
As of today, AUTOSAR is the de facto standard in the automotive industry, providing a common software architec- ture and development process for automotive applications. While this standard is originally written for singlecore operated Elec- tronic Control Units (ECU), new guidelines and recommendations have been added recently to provide support for multicore archi- tectures. This update came as a response to the steady increase of the number and complexity of the software functions embedded in modern vehicles, which call for the computing power of multicore execution environments. In this paper, we enumerate and analyze the design options and the challenges of porting AUTOSAR-based automotive applications onto multicore platforms. In particular, we investigate those options when considering the emerging many- core architectures that provide a more scalable environment than the traditional multicore systems. Such platforms are suitable to enable massive parallel execution, and their design is more suitable for partitioning and isolating the software components.
Resumo:
Euromicro Conference on Digital System Design (DSD 2015), Funchal, Portugal.
Resumo:
Dissertation presented to obtain the Ph.D degree in Chemistry
Resumo:
We propose a fractional model for computer virus propagation. The model includes the interaction between computers and removable devices. We simulate numerically the model for distinct values of the order of the fractional derivative and for two sets of initial conditions adopted in the literature. We conclude that fractional order systems reveal richer dynamics than the classical integer order counterpart. Therefore, fractional dynamics leads to time responses with super-fast transients and super-slow evolutions towards the steady-state, effects not easily captured by the integer order models.