973 resultados para Multiple defenses -Secondary metabolites


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemical composition of the ethanolic extract of the leaves and roots from Philodendron imbe Schott was investigated. The main constituents isolated the leaves were beta-sitosterol one polyprenoid hexaprenol, and 6beta-hydroxy-stigmast-4-en-3-one, a steroid, not yet reported in the Philodendron gender. A mixture of constituents, namely, ethyl myristoleate, alpha-bisabolol, ethyl isopalmitate, 3-octadecenyl-phenol and the major component ethyl palmitate, were isolated from the roots. Structure elucidation of these secondary metabolites was accomplished by spectrometric analysis, including 1D and 2D NMR experiments such as ¹H, ¹H and ¹H,13C-COSY.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since secondary metabolites represent a chemical interface between plants and surrounding environment, their syntheses are frequently affected by environmental conditions. Thus, variations in the total content and/or of the relative proportions of secondary metabolites in plants can take place. We review the main environmental factors that can streamline or alter the production or concentration of secondary metabolites in plants. How seasonality, circadian rhythm, developmental stage and age, temperature, water availability, UV radiation, soil nutrients, altitude, atmospheric composition and tissue damage influence secondary metabolism are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antimycobacterial and cytotoxicity activity of synthetic and natural compounds. Secondary metabolites from Curvularia eragrostidis and Drechslera dematioidea, Clusia sp. floral resin, alkaloids from Pilocarpus alatus, salicylideneanilines, piperidine amides, the amine 1-cinnamylpiperazine and chiral pyridinium salts were assayed on Mycobacterium tuberculosis H37Rv. N-(salicylidene)-2-hydroxyaniline was the most effective compound with a minimal inhibitory concentration (MIC) of 8 µmol/L. Dihydrocurvularin was moderately effective with a MIC of 40 µmol/L. Clusia sp. floral resin and a gallocatechin-epigallocatechin mixture showed MIC of 0.02 g/L and 38 µmol/L, respectively. The cytotoxicity was evaluated for N-(salicylidene)-2-hydroxyaniline, curvularin, dihydrocurvularin and Clusia sp. floral resin, and the selectivity indexes were > 125, 0.47, 0.75 and 5, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phytochemical investigation of the flowers of Pterogyne nitens (Caesalpinioideae) resulted in the isolation and identification of nine phenolic derivatives, quercetin 3-O-sophoroside, taxifolin, astilbin, ourateacatechin, caffeic, ferulic, sinapic, chlorogenic and gallic acid, besides two guanidine alkaloids, pterogynine, pterogynidine. This is the first time these compounds have been reported in P. nitens flowers. As this is a monospecific genus, these secondary metabolites may have taxonomical significance. Their structures were assigned on the basis of spectroscopic analyses, including two-dimensional NMR techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phytochemical investigation of the hexane extract of fruit shells of Copaifera langsdorffii Desf. (Caesalpinioideae) afforded ent-kaur-16-en-19-oic acid, polyalthic acid, nivenolide and the mixture of caryophyllene oxide and ent-kaur-16-en-19-oic acid. The chloroform extract of unripe seeds led to the isolation of coumarin and the GC/MS analysis of the extract allowed the identification of 81.8% of the fatty acid composition after hydrolysis followed by methylation. The main fatty acid identified was oleic acid (33.1%). The isolation of all secondary metabolites was accomplished by modern chromatographic methods and the structure determination was accomplished by spectrometric methods (IR, MS, NMR ¹H and 13C).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several reasons motivated the development of new generations of antibiotics, such as their high ability to develop resistance to virtually all kinds of anti-infective agents and the crescent market demand for new drugs to treat special demanding patients. After penicillin discovery, several antibiotics were developed from fungal metabolites, since antibacterial secondary metabolites consists on a fungal endogenous protective mechanism against natural competitors. The aim of this review is to present the structural diversity of antibacterial and antifungal metabolites produced by fungi, mentioning sources of fungal isolates, cultivation process and details on the scope of their antibiotic activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This review describes aspects of the Bromeliaceae family dealing the traditional applications, biological activities and distribution of secondary metabolites in distinct subfamilies. Some species are used with medicinal purposed in the treatment of respiratory, diabetes or inflammation diseases, and gastrointestinal disorders. Special emphasis on cycloartane triterpenoids and flavonoids, typical metabolites of this family, are presented. Bromeliaceae is unique amongst the monocotyledons in the frequency and variety of flavonoids with hydroxylation or methoxylation at the 6-position. Other compound classes as steroids, hidroxycinnamic acids, phenylpropane diglycerides, lignans, are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The genus Rauia, that is poorly chemically studied, belongs to the Rutaceae family. This family has been known to contain a large variety of secondary metabolites. Our phytochemical investigation of the stem and leaves of Rauia resinosa has led to the identification of the structurally related coumarins: murralongin (1), murrangatin (2), munomicrolin (3), murrangatin diacetate (4), umbelliferone (5), rauianin (6) and one novel coumarin: 3-ethylrauianin (7); the alkaloids: N-methyl-4-methoxy-2-quinolone (8), mirtopsine (9), dictamine (10), γ-fagarine (11), skimmianine (12), Z-dimethylrhoifolinate (13), zantodioline (14), zantobungeanine (15), veprissine (16), one novel alkaloid 7-hydroxy-8-methoxy-N-methylflindersine (17) and 8-hydroxy-N-methylflindersine (18) that is described as a natural product for the first time, and a mixture of steroids: as sitosterol and stigmasterol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reviews the current literature about the chemical constituents and the biological activities of the subtribe Lychnophorinae (Vernonieae, Asteraceae). The notable secondary metabolites are sesquiterpene lactones of furanoheliangolide (goyazensolide and eremantholide types) and flavonoids. Some of its most investigated activities include its anti-inflammatory, analgesic, antimicrobial and cytotoxic activities, specially for the Lychnophora and Eremanthus species. The data presented on this paper not only displayed the role played by the Lychnophorinae species as a source of bioactive compounds, but also reinforced the need of further studies involving the species of such subtribe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to evaluate the effects of environmental factors on the content of secondary metabolites, the chemical profiles of infusions from leaves of seven genotypes of Lippia gracilis Schauer, sourced from two locations (Sergipe and Bahia state) and collected during different seasons: summer (with and without irrigation) and winter, were determined by HPLC-DAD. The fingerprint chromatograms were analyzed by PCA to evaluate similarities and differences among the samples. Results revealed differences among genotypes collected and cultivated under the same conditions, suggesting that three genotypes have greater resistance to drought conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phytochemical studies of the leaves and stem have led to the identification of the known acridone alkaloids arborinine, methyl-arborinine, 1-hydroxy-3-methoxy-N-methyl acridone, xanthoxoline, 1,2,3,5-tetramethoxy-N-methylacridone, toddaliopsin C and the new seco acridone alkaloid inopinatin. The known quinoline alkaloids 2-phenyl-1-methyl-quinolin-4(1H)-one, 2-phenyl-1-methyl-7-methoxy-quinolin-4(1H)-one, dictamnine, and the coumarins scopoletin and marmesin were also isolated. The isolated compounds and the distribution of secondary metabolites, which are systematically important, obtained from literature, clearly confirmed that some species formerly described in the genera Angostura and Galipea in fact shall belong to the genus Conchocarpus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemistry of natural products has been remarkably growing in the past few decades in Brazil. Aspects related to the isolation and identification of new natural products, as well as their biological activities, have been achieved in different laboratories working on this subject in the country. More recently, the introduction of new molecular biology tools has strongly influenced the research on natural products, mainly those produced by microorganisms, creating new possibilities to assess the chemical diversity of secondary metabolites. This paper describes some ideas on how the research on natural products can have a considerable input from molecular biology in the generation of chemical diversity. We also explore the role of microbial natural products in mediating interspecific interactions and their relevance to ecological studies. Examples of the generation of chemical diversity are highlighted by using genome mining, mutasynthesis, combinatorial biosynthesis, metagenomics, and synthetic biology, while some aspects of microbial ecology are also discussed. The idea to bring up this topic is linked to the remarkable development of molecular biology techniques to generate useful chemicals from different organisms. Here, we focus mainly on microorganisms, even though similar approaches have also been applied to the study of plants and other organisms. Investigations in the frontier of chemistry and biology require interactions between different areas, characterizing the interdisciplinarity of this research field. The necessity of a real integration of chemistry and biology is pivotal to finding correct answers to a number of biological phenomena. The use of molecular biology tools to generate chemical diversity and control biosynthetic pathways is largely explored in the production of important biologically active compounds. Finally, we briefly comment on the Brazilian organization of research in this area, the necessity of new strategies for the graduation programs, and the establishment of networks as a way of organization to overcome some of the problems faced in the area of natural products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brazilian biodiversity is a colossal source of secondary metabolites with remarkable structural features, which are valuable in further biodiscovery studies. In order to fully understand the relations and interactions of a living system with its surroundings, efforts in natural product chemistry are directed toward the challenge of detecting and identifying all the molecular components present in complex samples. It is plausible that this endeavor was born out of recent technological sophistication in secondary metabolite identification with sensitive spectroscopic instruments (MS and NMR) and higher resolving power of chromatographic systems, which allow a decrease in the amount of required sample and time to acquire data. Nevertheless, the escalation of data acquired in these analyses must be sorted with statistical and multi-way tools in order to select key information. Chromatography is also of paramount importance, more so when selected compounds need to be isolated for further investigation. However, in the course of pursuing a "greener" environment, new policies, with an aim to decrease the use of energy and solvents, are being developed and incorporated into analytical methods. Metabolomics could be an effective tool to answer questions on how living organisms in our huge biodiversity work and interact with their surroundings while also being strategic to the development of high value bio-derived products, such as phytotherapeutics and nutraceuticals. The incorporation of proper phytotherapeutics in the so-called Brazilian Unified Health System is considered an important factor for the urgent improvement and expansion of the Brazilian national health system. Furthermore, this approach could have a positive impact on the international interest toward scientific research developed in Brazil as well as the development of high value bio-derived products, which appear as an interesting economic opportunity in national and global markets. Thus, this study attempts to highlight the recent advances in analytical tools used in detection of secondary metabolites, which can be useful as bioproducts. It also emphasizes the potential avenues to be explored in Brazilian biodiversity, known for its rich chemical diversity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This review sought to highlight the importance of natural products versus synthetic products, as bioactive molecules, towards the development of better management practices in aquaculture. The nature, structure, activity, and applications of these naturally-occurring high value-added compounds are described, as well as the methodology used for their study. Examples include the well-known rotenone, eugenol, forskolin, isatin, malyngamide, chlorodesmine, pachydictyol, fimbrolide, and other potentially active molecules in aquaculture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fusarium solani f. sp. piperis (teleomorph: Nectria haematococca f. sp. piperis), causal agent of root rot and stem blight on black pepper (Piper nigrum), produces secondary metabolites with toxigenic properties, capable of inducing vein discoloration in detached leaves and wilting in transpiring microcuttings. Production of F. solani f. sp. piperis (Fsp) toxic metabolites reached a peak after 25 days of static incubation on potato sucrose broth at 25 ºC under illumination. Changes in the pH of the culture filtrate did not alter the effect of toxic metabolites. However, when the pH was changed before the medium had been autoclaved, a more intense biological response was observed, with an optimum at pH 6.0. Isolates that produced red pigments in liquid cultures were more efficient in producing biologically active culture filtrates than those which produced pink coloured or clear filtrates suggesting that these pigments could be related to toxigenic activity. Detached leaves of seven black pepper cultivars and Piper betle showed symptoms of vein discoloration after immersion in autoclaved and non-autoclaved Fsp culture filtrates indicating the thermostable nature of these toxic metabolites.