885 resultados para Multiple Instance Dictionary Learning
Resumo:
In the last decade, multi-sensor data fusion has become a broadly demanded discipline to achieve advanced solutions that can be applied in many real world situations, either civil or military. In Defence,accurate detection of all target objects is fundamental to maintaining situational awareness, to locating threats in the battlefield and to identifying and protecting strategically own forces. Civil applications, such as traffic monitoring, have similar requirements in terms of object detection and reliable identification of incidents in order to ensure safety of road users. Thanks to the appropriate data fusion technique, we can give these systems the power to exploit automatically all relevant information from multiple sources to face for instance mission needs or assess daily supervision operations. This paper focuses on its application to active vehicle monitoring in a particular area of high density traffic, and how it is redirecting the research activities being carried out in the computer vision, signal processing and machine learning fields for improving the effectiveness of detection and tracking in ground surveillance scenarios in general. Specifically, our system proposes fusion of data at a feature level which is extracted from a video camera and a laser scanner. In addition, a stochastic-based tracking which introduces some particle filters into the model to deal with uncertainty due to occlusions and improve the previous detection output is presented in this paper. It has been shown that this computer vision tracker contributes to detect objects even under poor visual information. Finally, in the same way that humans are able to analyze both temporal and spatial relations among items in the scene to associate them a meaning, once the targets objects have been correctly detected and tracked, it is desired that machines can provide a trustworthy description of what is happening in the scene under surveillance. Accomplishing so ambitious task requires a machine learning-based hierarchic architecture able to extract and analyse behaviours at different abstraction levels. A real experimental testbed has been implemented for the evaluation of the proposed modular system. Such scenario is a closed circuit where real traffic situations can be simulated. First results have shown the strength of the proposed system.
Resumo:
Cooperative systems are suitable for many types of applications and nowadays these system are vastly used to improve a previously defined system or to coordinate multiple devices working together. This paper provides an alternative to improve the reliability of a previous intelligent identification system. The proposed approach implements a cooperative model based on multi-agent architecture. This new system is composed of several radar-based systems which identify a detected object and transmit its own partial result by implementing several agents and by using a wireless network to transfer data. The proposed topology is a centralized architecture where the coordinator device is in charge of providing the final identification result depending on the group behavior. In order to find the final outcome, three different mechanisms are introduced. The simplest one is based on majority voting whereas the others use two different weighting voting procedures, both providing the system with learning capabilities. Using an appropriate network configuration, the success rate can be improved from the initial 80% up to more than 90%.
Resumo:
El objetivo principal de este proyecto ha sido introducir aprendizaje automático en la aplicación FleSe. FleSe es una aplicación web que permite realizar consultas borrosas sobre bases de datos nítidos. Para llevar a cabo esta función la aplicación utiliza unos criterios para definir los conceptos borrosos usados para llevar a cabo las consultas. FleSe además permite que el usuario cambie estas personalizaciones. Es aquí donde introduciremos el aprendizaje automático, de tal manera que los criterios por defecto cambien y aprendan en función de las personalizaciones que van realizando los usuarios. Los objetivos secundarios han sido familiarizarse con el desarrollo y diseño web, al igual que recordar y ampliar el conocimiento sobre lógica borrosa y el lenguaje de programación lógica Ciao-Prolog. A lo largo de la realización del proyecto y sobre todo después del estudio de los resultados se demuestra que la agrupación de los usuarios marca la diferencia con la última versión de la aplicación. Esto se basa en la siguiente idea, podemos usar un algoritmo de aprendizaje automático sobre las personalizaciones de los criterios de todos los usuarios, pero la gran diversidad de opiniones de los usuarios puede llevar al algoritmo a concluir criterios erróneos o no representativos. Para solucionar este problema agrupamos a los usuarios intentando que cada grupo tengan la misma opinión o mismo criterio sobre el concepto. Y después de haber realizado las agrupaciones usar el algoritmo de aprendizaje automático para precisar el criterio por defecto de cada grupo de usuarios. Como posibles mejoras para futuras versiones de la aplicación FleSe sería un mejor control y manejo del ejecutable plserver. Este archivo se encarga de permitir a la aplicación web usar el lenguaje de programación lógica Ciao-Prolog para llevar a cabo la lógica borrosa relacionada con las consultas. Uno de los problemas más importantes que ofrece plserver es que bloquea el hilo de ejecución al intentar cargar un archivo con errores y en caso de ocurrir repetidas veces bloquea todas las peticiones siguientes bloqueando la aplicación. Pensando en los usuarios y posibles clientes, sería también importante permitir que FleSe trabajase con bases de datos de SQL en vez de almacenar la base de datos en los archivos de Prolog. Otra posible mejora basarse en distintas características a la hora de agrupar los usuarios dependiendo de los conceptos borrosos que se van ha utilizar en las consultas. Con esto se conseguiría que para cada concepto borroso, se generasen distintos grupos de usuarios, los cuales tendrían opiniones distintas sobre el concepto en cuestión. Así se generarían criterios por defecto más precisos para cada usuario y cada concepto borroso.---ABSTRACT---The main objective of this project has been to introduce machine learning in the application FleSe. FleSe is a web application that makes fuzzy queries over databases with precise information, using defined criteria to define the fuzzy concepts used by the queries. The application allows the users to change and custom these criteria. On this point is where the machine learning would be introduced, so FleSe learn from every new user customization of the criteria in order to generate a new default value of it. The secondary objectives of this project were get familiar with web development and web design in order to understand the how the application works, as well as refresh and improve the knowledge about fuzzy logic and logic programing. During the realization of the project and after the study of the results, I realized that clustering the users in different groups makes the difference between this new version of the application and the previous. This conclusion follows the next idea, we can use an algorithm to introduce machine learning over the criteria that people have, but the problem is the diversity of opinions and judgements that exists, making impossible to generate a unique correct criteria for all the users. In order to solve this problem, before using the machine learning methods, we cluster the users in order to make groups that have the same opinion, and afterwards, use the machine learning methods to precise the default criteria of each users group. The future improvements that could be important for the next versions of FleSe will be to control better the behaviour of the plserver file, that cost many troubles at the beginning of this project and it also generate important errors in the previous version. The file plserver allows the web application to use Ciao-Prolog, a logic programming language that control and manage all the fuzzy logic. One of the main problems with plserver is that when the user uploads a file with errors, it will block the thread and when this happens multiple times it will start blocking all the requests. Oriented to the customer, would be important as well to allow FleSe to manage and work with SQL databases instead of store the data in the Prolog files. Another possible improvement would that the cluster algorithm would be based on different criteria depending on the fuzzy concepts that the selected Prolog file have. This will generate more meaningful clusters, and therefore, the default criteria offered to the users will be more precise.
Resumo:
En los últimos años han surgido nuevos campos de las tecnologías de la información que exploran el tratamiento de la gran cantidad de datos digitales existentes y cómo transformarlos en conocimiento explícito. Las técnicas de Procesamiento del Lenguaje Natural (NLP) son capaces de extraer información de los textos digitales presentados en forma narrativa. Además, las técnicas de machine learning clasifican instancias o ejemplos en función de sus atributos, en distintas categorías, aprendiendo de otros previamente clasificados. Los textos clínicos son una gran fuente de información no estructurada; en consecuencia, información no explotada en su totalidad. Algunos términos usados en textos clínicos se encuentran en una situación de afirmación, negación, hipótesis o histórica. La detección de esta situación es necesaria para la estructuración de información, pero a su vez tiene una gran complejidad. Extrayendo características lingüísticas de los elementos, o tokens, de los textos mediante NLP; transformando estos tokens en instancias y las características en atributos, podemos mediante técnicas de machine learning clasificarlos con el objetivo de detectar si se encuentran afirmados, negados, hipotéticos o históricos. La selección de los atributos que cada token debe tener para su clasificación, así como la selección del algoritmo de machine learning utilizado son elementos cruciales para la clasificación. Son, de hecho, los elementos que componen el modelo de clasificación. Consecuentemente, este trabajo aborda el proceso de extracción de características, selección de atributos y selección del algoritmo de machine learning para la detección de la negación en textos clínicos en español. Se expone un modelo para la clasificación que, mediante el algoritmo J48 y 35 atributos obtenidos de características lingüísticas (morfológicas y sintácticas) y disparadores de negación, detecta si un token está negado en 465 frases provenientes de textos clínicos con un F-Score del 73%, una exhaustividad del 66% y una precisión del 81% con una validación cruzada de 10 iteraciones. ---ABSTRACT--- New information technologies have emerged in the recent years which explore the processing of the huge amount of existing digital data and its transformation into knowledge. Natural Language Processing (NLP) techniques are able to extract certain features from digital texts. Additionally, through machine learning techniques it is feasible to classify instances according to different categories, learning from others previously classified. Clinical texts contain great amount of unstructured data, therefore information not fully exploited. Some terms (tokens) in clinical texts appear in different situations such as affirmed, negated, hypothetic or historic. Detecting this situation is necessary for the structuring of this data, however not simple. It is possible to detect whether if a token is negated, affirmed, hypothetic or historic by extracting its linguistic features by NLP; transforming these tokens into instances, the features into attributes, and classifying these instances through machine learning techniques. Selecting the attributes each instance must have, and choosing the machine learning algorithm are crucial issues for the classification. In fact, these elements set the classification model. Consequently, this work approaches the features retrieval as well as the attributes and algorithm selection process used by machine learning techniques for the detection of negation in clinical texts in Spanish. We present a classification model which, through J48 algorithm and 35 attributes from linguistic features (morphologic and syntactic) and negation triggers, detects whether if a token is negated in 465 sentences from historical records, with a result of 73% FScore, 66% recall and 81% precision using a 10-fold cross-validation.
Resumo:
The conditioning of cocaine's subjective actions with environmental stimuli may be a critical factor in long-lasting relapse risk associated with cocaine addiction. To study the significance of learning factors in persistent addictive behavior as well as the neurobiological basis of this phenomenon, rats were trained to associate discriminative stimuli (SD) with the availability of i.v. cocaine vs. nonrewarding saline solution, and then placed on extinction conditions during which the i.v. solutions and SDs were withheld. The effects of reexposure to the SD on the recovery of responding at the previously cocaine-paired lever and on Fos protein expression then were determined in two groups. One group was tested immediately after extinction, whereas rats in the second group were confined to their home cages for an additional 4 months before testing. In both groups, the cocaine SD, but not the non-reward SD, elicited strong recovery of responding and increased Fos immunoreactivity in the basolateral amygdala and medial prefrontal cortex (areas Cg1/Cg3). The response reinstatement and Fos expression induced by the cocaine SD were both reversed by selective dopamine D1 receptor antagonists. The undiminished efficacy of the cocaine SD to elicit drug-seeking behavior after 4 months of abstinence parallels the long-lasting nature of conditioned cue reactivity and cue-induced cocaine craving in humans, and confirms a significant role of learning factors in the long-lasting addictive potential of cocaine. Moreover, the results implicate D1-dependent neural mechanisms within the medial prefrontal cortex and basolateral amygdala as substrates for cocaine-seeking behavior elicited by cocaine-predictive environmental stimuli.
Resumo:
The Dali Domain Dictionary (http://www.ebi.ac.uk/dali/domain) is a numerical taxonomy of all known structures in the Protein Data Bank (PDB). The taxonomy is derived fully automatically from measurements of structural, functional and sequence similarities. Here, we report the extension of the classification to match the traditional four hierarchical levels corresponding to: (i) supersecondary structural motifs (attractors in fold space), (ii) the topology of globular domains (fold types), (iii) remote homologues (functional families) and (iv) homologues with sequence identity above 25% (sequence families). The computational definitions of attractors and functional families are new. In September 2000, the Dali classification contained 10 531 PDB entries comprising 17 101 chains, which were partitioned into five attractor regions, 1375 fold types, 2582 functional families and 3724 domain sequence families. Sequence families were further associated with 99 582 unique homologous sequences in the HSSP database, which increases the number of effectively known structures several-fold. The resulting database contains the description of protein domain architecture, the definition of structural neighbours around each known structure, the definition of structurally conserved cores and a comprehensive library of explicit multiple alignments of distantly related protein families.
Resumo:
A fundamental question about memory and cognition concerns how information is acquired about categories and concepts as the result of encounters with specific instances. We describe a profoundly amnesic patient (E.P.) who cannot learn and remember specific instances--i.e., he has no detectable declarative memory. Yet after inspecting a series of 40 training stimuli, he was normal at classifying novel stimuli according to whether they did or did not belong to the same category as the training stimuli. In contrast, he was unable to recognize a single stimulus after it was presented 40 times in succession. These findings demonstrate that the ability to classify novel items, after experience with other items in the same category, is a separate and parallel memory function of the brain, independent of the limbic and diencephalic structures essential for remembering individual stimulus items (declarative memory). Category-level knowledge can be acquired implicitly by cumulating information from multiple training examples in the absence of detectable conscious memory for the examples themselves.
Resumo:
Academic libraries increasingly serve a more diverse population of users not only in regard to race and ethnicity, but also to age, gender, language, sexual orientation, and national and cultural backgrounds. This papers reports the findings of the study that explored information behaviour research as a potential source of information about diversity of academic library users and examined the relationship between the use of different research designs and data collection methods and the information gathered about users’ diverse backgrounds. The study found that information behaviour research offers limited insight into the diversity of academic library users. The choice of a research design was not critical but the use of multiple data collection played a role in gathering information about culturally diverse users.
Resumo:
The exponential growth of the subjective information in the framework of the Web 2.0 has led to the need to create Natural Language Processing tools able to analyse and process such data for multiple practical applications. They require training on specifically annotated corpora, whose level of detail must be fine enough to capture the phenomena involved. This paper presents EmotiBlog – a fine-grained annotation scheme for subjectivity. We show the manner in which it is built and demonstrate the benefits it brings to the systems using it for training, through the experiments we carried out on opinion mining and emotion detection. We employ corpora of different textual genres –a set of annotated reported speech extracted from news articles, the set of news titles annotated with polarity and emotion from the SemEval 2007 (Task 14) and ISEAR, a corpus of real-life self-expressed emotion. We also show how the model built from the EmotiBlog annotations can be enhanced with external resources. The results demonstrate that EmotiBlog, through its structure and annotation paradigm, offers high quality training data for systems dealing both with opinion mining, as well as emotion detection.
Resumo:
The methodology “b-learning” is a new teaching scenario and it requires the creation, adaptation and application of new learning tools searching the assimilation of new collaborative competences. In this context, it is well known the knowledge spirals, the situational leadership and the informal learning. The knowledge spirals is a basic concept of the knowledge procedure and they are based on that the knowledge increases when a cycle of 4 phases is repeated successively.1) The knowledge is created (for instance, to have an idea); 2) The knowledge is decoded into a format to be easily transmitted; 3) The knowledge is modified to be easily comprehensive and it is used; 4) New knowledge is created. This new knowledge improves the previous one (step 1). Each cycle shows a step of a spiral staircase: by going up the staircase, more knowledge is created. On the other hand, the situational leadership is based on that each person has a maturity degree to develop a specific task and this maturity increases with the experience. Therefore, the teacher (leader) has to adapt the teaching style to the student (subordinate) requirements and in this way, the professional and personal development of the student will increase quickly by improving the results and satisfaction. This educational strategy, finally combined with the informal learning, and in particular the zone of proximal development, and using a learning content management system own in our University, gets a successful and well-evaluated learning activity in Master subjects focused on the collaborative activity of preparation and oral exhibition of short and specific topics affine to these subjects. Therefore, the teacher has a relevant and consultant role of the selected topic and his function is to guide and supervise the work, incorporating many times the previous works done in other courses, as a research tutor or more experienced student. Then, in this work, we show the academic results, grade of interactivity developed in these collaborative tasks, statistics and the satisfaction grade shown by our post-graduate students.
Resumo:
We present a purposeful initiative to open new grounds for teaching Geometrical Optics. It is based on the creation of an innovative education networking involving academic staff from three Spanish universities linked together around Optics. Nowadays, students demand online resources such as innovative multimedia tools for complementing the understanding of their studies. Geometrical Optics relies on basics of light phenomena like reflection and refraction and the use of simple optical elements such as mirrors, prisms, lenses, and fibers. The mathematical treatment is simple and the equations are not too complicated. But from our long time experience in teaching to undergraduate students, we realize that important concepts are missed by these students because they do not work ray tracing as they should do. Moreover, Geometrical Optics laboratory is crucial by providing many short Optics experiments and thus stimulating students interest in the study of such a topic. Multimedia applications help teachers to cover those student demands. In that sense, our educational networking shares and develops online materials based on 1) video-tutorials of laboratory experiences and of ray tracing exercises, 2) different online platforms for student self-examinations and 3) computer assisted geometrical optics exercises. That will result in interesting educational synergies and promote student autonomy for learning Optics.
Resumo:
This study evaluates the technical efficiency of the learning-teaching process in higher education using a three-stage procedure that offers advances in comparison to previous studies and improves the quality of the results. First, it utilizes a multiple stage Data Envelopment Analysis (DEA) with contextual variables. Second, the levels of super efficiency are calculated in order to prioritize the efficiency units. And finally, through sensitivity analysis, the contribution of each key performance indicator (KPI) is established with respect to the efficiency levels without omission of variables. The analytical data was collected from a survey completed by 633 tourism students during the 2011/12, 2012/13 and 2013/14 academic course years. The results suggest that level of satisfaction with the course, diversity of materials and satisfaction with the teacher were the most important factors affecting teaching performance. Furthermore, the effect of the contextual variables was found to be significant.
Resumo:
The strategic orientation of firms can take on many forms. Researchers most commonly distinguish between entrepreneurial, market, and learning orientations. In combination, strategic orientations represent a firm's value proposition in terms of the markets in which it operates, where it deploys its resources, and which behavioral patterns are established. This thesis provides insights into the effectiveness of strategic orientations by adopting multiple theoretical perspectives. The strategic orientations of entrepreneurial, market, learning, and innovation orientations are investigated in an isolated as well as interrelated manner. The first research article concentrates on entrepreneurial orientation as its conceptualization and operationalization is subject to several debates in the literature. This conceptual study shows how the challenges of the entrepreneurial orientation construct can be overcome in future research to arrive at a higher level of construct clarity. Thereby, the theoretical perspectives of entrepreneurial dominant logic and the theory of planned behavior are employed. The literature has predominantly focused on investigating the effectiveness of particular strategic orientations. Recently, scholars have stressed their synergetic impact on firm performance and, as such, the relevance of considering their combined role in creating superior value for firms. However, empirical research on their interrelatedness remains scant and dispersed, making it necessary to conduct further research on strategic orientations in an integrative manner. As such, the second research article demonstrates which interrelated roles are played by entrepreneurial, market, and learning orientations in their relationship to firm performance. The rich body of existing knowledge is synthesized by means of meta-analysis under the perspective of strategic coalignment as well as the resource-based view of the firm.