943 resultados para Multi-drug resistant bacteria
Resumo:
OBJECTIVE: Although little studied in developing countries, multidrug-resistant tuberculosis (MDR-TB) is considered a major threat. We report the molecular epidemiology, clinical features and outcome of an emerging MDR-TB epidemic. METHODS: In 1996 all tuberculosis suspects in the rural Hlabisa district, South Africa, had sputum cultured, and drug susceptibility patterns of mycobacterial isolates were determined. Isolates with MDR-TB (resistant to both isoniazid and rifampicin) were DNA fingerprinted by restriction fragment length polymorphism (RFLP) using IS6110 and polymorphic guanine-cytosine-rich sequence-based (PGRS) probes. Patients with MDR-TB were traced to determine outcome. Data were compared with results from a survey of drug susceptibility done in 1994. RESULTS: The rate of MDR-TB among smear-positive patients increased six-fold from 0.36% (1/275) in 1994 to 2.3% (13/561) in 1996 (P = 0.04). A further eight smear-negative cases were identified in 1996 from culture, six of whom had not been diagnosed with tuberculosis. MDR disease was clinically suspected in only five of the 21 cases (24%). Prevalence of primary and acquired MDR-TB was 1.8% and 4.1%, respectively. Twelve MDR-TB cases (67%) were in five RFLP-defined clusters. Among 20 traced patients, 10 (50%) had died, five had active disease (25%) and five (25%) were apparently cured. CONCLUSIONS: The rate of MDR-TB has risen rapidly in Hlabisa, apparently due to both reactivation disease and recent transmission. Many patients were not diagnosed with tuberculosis and many were not suspected of drug-resistant disease, and outcome was poor.
Resumo:
Background: There are few studies on HIV subtypes and primary and secondary antiretroviral drug resistance (ADR) in community-recruited samples in Brazil. We analyzed HIV clade diversity and prevalence of mutations associated with ADR in men who have sex with men in all five regions of Brazil. Methods: Using respondent-driven sampling, we recruited 3515 men who have sex with men in nine cities: 299 (9.5%) were HIV-positive; 143 subjects had adequate genotyping and epidemiologic data. Forty-four (30.8%) subjects were antiretroviral therapy-experienced (AE) and 99 (69.2%) antiretroviral therapy-naive (AN). We sequenced the reverse transcriptase and protease regions of the virus and analyzed them for drug resistant mutations using World Health Organization guidelines. Results: The most common subtypes were B (81.8%), C (7.7%), and recombinant forms (6.9%). The overall prevalence of primary ADR resistance was 21.4% (i.e. among the AN) and secondary ADR was 35.8% (i.e. among the AE). The prevalence of resistance to protease inhibitors was 3.9% (AN) and 4.4% (AE); to nucleoside reverse transcriptase inhibitors 15.0% (AN) and 31.0% (AE) and to nonnucleoside reverse transcriptase inhibitors 5.5% (AN) and 13.2% (AE). The most common resistance mutation for nucleoside reverse transcriptase inhibitors was 184V (17 cases) and for nonnucleoside reverse transcriptase inhibitors 103N (16 cases). Conclusions: Our data suggest a high level of both primary and secondary ADR in men who have sex with men in Brazil. Additional studies are needed to identify the correlates and causes of antiretroviral therapy resistance to limit the development of resistance among those in care and the transmission of resistant strains in the wider epidemic.
Resumo:
We investigated the exposure to antibiotics in the production of antibiotic-mutant strains of Salmonella. Ten isolates of poultry origin were assayed for antibiotic susceptibilities. One strain of Salmonella Enteritidis, one of Salmonella Heidelberg, and one of Salmonella Typhimurium were selected to induce antimicrobial resistance. Each strain was exposed to high concentrations of streptomycin, rifampicin, and nalidixic acid, respectively. Parent and antibiotic-mutant strains were assayed for antibiotic susceptibilities using a commercial microdilution test and the disk susceptibility test. The strains were assessed for virulence genes and evaluated for fecal shedding, cecal colonization, organ invasion, and mean Salmonella counts after inoculation in 1-day-old chicks. The study revealed that exposure to high concentrations of streptomycin produced the antibiotic-mutant strain SE/LABOR/USP/08 and the exposure to rifampicin produced the antibiotic-mutant SH/LABOR/USP/08. These strains showed significantly reduced fecal shedding (P = 0.05) and organ invasion, persisting less than the parental strains and showing no clinical signs in inoculated chicks. High concentrations of nalidixic acid produced the antibiotic-mutant strain ST/LABOR/USP/08, which did not show any differences compared with the parent strain. Likewise, SE/LABOR/USP/08 did not show the expression of plasmid-encoded fimbriae (pefA) and plasmid virulence protein (spvC), suggesting that after exposure to streptomycin, the parent isolate lost the original gene expression, reducing fecal shedding and organ invasion in inoculated chicks.
Resumo:
A simple technique for routine, reproducible global surveillance of the drug susceptibility status of the anaerobic protozoa Trichomonas, Entamoeba, and Giardia is described, Data collected using this technique can be readily compared among different laboratories and with previously reported data. The technique employs a commercially available sachet and bag system to generate a low-oxygen environment and log, drug dilutions in microtiter plates, which can be monitored without aerobic exposure, to assay drug-resistant laboratory lines and clinically resistant isolates. MICs (after 2 days) of 3.2 and 25 muM indicated metronidazole-sensitive and highly clinically resistant isolates of T. vaginalis in anaerobic assays, respectively. The aerobic MICs were 25 and > 200 muM. MICs (1 day) of 12.5 to 25 muM were found for axenic lines of E. histolytica, and MICs for G. duodenalis (3 days) ranged from 6.3 muM for metronidazole-sensitive isolates to 50 muM for laboratory metronidazole-resistant lines. This technique should encourage more extensive monitoring of drug resistance in these organisms.
Resumo:
The purpose of this study was to investigate the presence of beta-lactam-resistant bacteria in six different types of Portuguese cheese. The numbers of ampicillin resistant (AMP(r)) bacteria varied from 4.7 x 10(2) to 1.5 x 10(7) CFU/g. Within 172 randomly selected beta-lactam-resistant bacteria, 44 resistant phenotypes were found and 31.4% were multidrug resistant. The majority (85%) of the isolates identified belonged to the Enterobacteriaceae family. The presence of the bla(TEM) gene was detected in 80.9% of the tested isolates. The results suggest that without thermal processing of the milk and good hygienic practices, cheese may act as a vehicle of transfer of beta-lactam-resistant bacteria to the gastrointestinal tract of consumers.
Resumo:
In recent years Ionic Liquids (ILs) are being applied in life sciences. ILs are being produce with active pharmaceutical drugs (API) as they can reduce polymorphism and drug solubility problems [1] Also ILs are being applied as a drug delivery device in innovative therapies What is appealing in ILs is the ILs building up platform, the counter-ion can be carefully chosen in order to avoid undesirable side effects or to give innovative therapies in which two active ions are paired. This work shows ILs based on ampicillin (an anti-bacterial agent) and ILs based on Amphotericin B. Also we show studies that indicate that ILs based on Ampicillin could reverse resistance in some bacteria. The ILs produced in this work were synthetized by the neutralization method described in Ferraz et. al. [2] Ampicillin anion was combined with the following organic cations 1-ethyl-3-methylimidazolium, [EMIM]; 1-hydroxy-ethyl-3-methylimidazolium, [C2OHMIM]; choline, [cholin]; tetraethylammonium, [TEA]; cetylpyridinium, [C16pyr] and trihexyltetradecylphosphonium, [P6,6,6,14]. Amphotericin B was combined with [C16pyr], [cholin] and 1-metohyethyl-3-methylimidazolium, [C3OMIM]. The ILs-APIs based on ampicillin[2] were tested against sensitive Gram-negative bacteria Escherichia coli ATCC 25922 and Klebsiella pneumonia (clinical isolated), as well as on Gram positive Staphylococcus Aureus ATCC 25923, Staphylococcus epidermidis and Enterococcus faecalis. The arising resistance developed by bacteria to antibiotics is a serious public health threat and needs new and urgent measures. We study the bacterial activity of these compounds against a panel of resistant bacteria (clinical isolated strains): E. coli CTX M9, E. coli TEM CTX M9, E. coli TEM1, E. coli CTX M2, E. coli AmpC Mox2. In this work we demonstrate that is possible to produce ILs from anti-bacterial and anti-fungal compounds. We show here that the new ILs can reverse the bacteria resistance. With the careful choice of the organic cation, it is possible to create important biological and physic-chemical properties. This work also shows that the ion-pair is fundamental in ampicillin mechanism of action.
Resumo:
Abstract The emergence of multi and extensively drug resistant tuberculosis (MDRTB and XDRTB) has increased the concern of public health authorities around the world. The World Health Organization has defined MDRTB as tuberculosis (TB) caused by organisms resistant to at least isoniazid and rifampicin, the main first-line drugs used in TB therapy, whereas XDRTB refers to TB resistant not only to isoniazid and rifampicin, but also to a fluoroquinolone and to at least one of the three injectable second-line drugs, kanamycin, amikacin and capreomycin. Resistance in Mycobacterium tuberculosis is mainly due to the occurrence of spontaneous mutations and followed by selection of mutants by subsequent treatment. However, some resistant clinical isolates do not present mutations in any genes associated with resistance to a given antibiotic, which suggests that other mechanism(s) are involved in the development of drug resistance, namely the presence of efflux pump systems that extrude the drug to the exterior of the cell, preventing access to its target. Increased efflux activity can occur in response to prolonged exposure to subinhibitory concentrations of anti-TB drugs, a situation that may result from inadequate TB therapy. The inhibition of efflux activity with a non-antibiotic inhibitor may restore activity of an antibiotic subject to efflux and thus provide a way to enhance the activity of current anti-TB drugs. The work described in this thesis foccus on the study of efflux mechanisms in the development of multidrug resistance in M. tuberculosis and how phenotypic resistance, mediated by efflux pumps, correlates with genetic resistance. In order to accomplish this goal, several experimental protocols were developed using biological models such as Escherichia coli, the fast growing mycobacteria Mycobacterium smegmatis, and Mycobacterium avium, before their application to M. tuberculosis. This approach allowed the study of the mechanisms that result in the physiological adaptation of E. coli to subinhibitory concentrations of tetracycline (Chapter II), the development of a fluorometric method that allows the detection and quantification of efflux of ethidium bromide (Chapter III), the characterization of the ethidium bromide transport in M. smegmatis (Chapter IV) and the contribution of efflux activity to macrolide resistance in Mycobacterium avium complex (Chapter V). Finally, the methods developed allowed the study of the role of efflux pumps in M. tuberculosis strains induced to isoniazid resistance (Chapter VI). By this manner, in Chapter II it was possible to observe that the physiological adaptation of E. coli to tetracycline results from an interplay between events at the genetic level and protein folding that decrease permeability of the cell envelope and increase efflux pump activity. Furthermore, Chapter III describes the development of a semi-automated fluorometric method that allowed the correlation of this efflux activity with the transport kinetics of ethidium bromide (a known efflux pump substrate) in E. coli and the identification of efflux inhibitors. Concerning M. smegmatis, we have compared the wild-type M. smegmatis mc2155 with knockout mutants for LfrA and MspA for their ability to transport ethidium bromide. The results presented in Chapter IV showed that MspA, the major porin in M. smegmatis, plays an important role in the entrance of ethidium bromide and antibiotics into the cell and that efflux via the LfrA pump is involved in low-level resistance to these compounds in M. smegmatis. Chapter V describes the study of the contribution of efflux pumps to macrolide resistance in clinical M. avium complex isolates. It was demonstrated that resistance to clarithromycin was significantly reduced in the presence of efflux inhibitors such as thioridazine, chlorpromazine and verapamil. These same inhibitors decreased efflux of ethidium bromide and increased the retention of [14C]-erythromycin in these isolates. Finaly, the methods developed with the experimental models mentioned above allowed the study of the role of efflux pumps on M. tuberculosis strains induced to isoniazid resistance. This is described in Chapter VI of this Thesis, where it is demonstrated that induced resistance to isoniazid does not involve mutations in any of the genes known to be associated with isoniazid resistance, but an efflux system that is sensitive to efflux inhibitors. These inhibitors decreased the efflux of ethidium bromide and also reduced the minimum inhibitory concentration of isoniazid in these strains. Moreover, expression analysis showed overexpression of genes that code for efflux pumps in the induced strains relatively to the non-induced parental strains. In conclusion, the work described in this thesis demonstrates that efflux pumps play an important role in the development of drug resistance, namely in mycobacteria. A strategy to overcome efflux-mediated resistance may consist on the use of compounds that inhibit efflux activity, restoring the activity of antimicrobials that are efflux pump substrates, a useful approach particularly in TB where the most effective treatment regimens are becoming uneffective due to the increase of MDRTB/XDRTB.
Resumo:
The evolution of multiple antibiotic resistance is an increasing global problem. Resistance mutations are known to impair fitness, and the evolution of resistance to multiple drugs depends both on their costs individually and on how they interact-epistasis. Information on the level of epistasis between antibiotic resistance mutations is of key importance to understanding epistasis amongst deleterious alleles, a key theoretical question, and to improving public health measures. Here we show that in an antibiotic-free environment the cost of multiple resistance is smaller than expected, a signature of pervasive positive epistasis among alleles that confer resistance to antibiotics. Competition assays reveal that the cost of resistance to a given antibiotic is dependent on the presence of resistance alleles for other antibiotics. Surprisingly we find that a significant fraction of resistant mutations can be beneficial in certain resistant genetic backgrounds, that some double resistances entail no measurable cost, and that some allelic combinations are hotspots for rapid compensation. These results provide additional insight as to why multi-resistant bacteria are so prevalent and reveal an extra layer of complexity on epistatic patterns previously unrecognized, since it is hidden in genome-wide studies of genetic interactions using gene knockouts.
Resumo:
Burn mortality statistics may be misleading unless they account properly for the many factors that can influence outcome. Such estimates are useful for patients and others making medical and financial decisions concerning their care. This study aimed to define the clinical, microbiological and laboratorial predictors of mortality with a view to focus on better burn care. Data were collected using independent variables, which were analyzed sequentially and cumulatively, employing univariate statistics and a pooled, cross-sectional, multivariate logistic regression to establish which variables better predict the probability of mortality. Survivors and non-survivors among burn patients were compared to define the predictive factors of mortality. Mortality rate was 5.0%. Higher age, larger burn area, presence of fungi in the wound, shorter length of stay and the presence of multi-resistant bacteria in the wound significantly predicted increased mortality. The authors conclude that those patients who are most apt to die are those with age > 50 years, with limited skin donor sites and those with multi-resistant bacteria and fungi in the wound.
Resumo:
Dissertação para obtenção do Grau de Doutor em Química Sustentável
Resumo:
Ionic Liquids (ILs) are class of compounds, which have become popular since the mid-1990s. Despite the fact that ILs are defined by one physical property (melting point), many of the potential applications are now related to their biological properties. The use of a drug as a liquid can avoid some problems related to polymorphism which can influence a drug´s solubility and thus its dosages. Also, the arrangement of the anion or cation with a specific drug might be relevant in order to: a) change the correspondent biopharmaceutical drug classification system; b) for the drug formulation process and c) the change the Active Pharmaceutical Ingredients’ (APIs). The main goal of this Thesis is the synthesis and study of physicochemical and biological properties of ILs as APIs from beta-lactam antibiotics (ampicillin, penicillin G and amoxicillin) and from the anti-fungal Amphotericin B. All the APIs used here were neutralized in a buffer appropriate hydroxide cations. The cation hydroxide was obtained on Amberlite resin (in the OH form) in order to exchange halides. The biological studies of these new compounds were made using techniques like the micro dilution and colorimetric methods. Overall a total of 19 new ILs were synthesised (6 ILs based on ampicillin, 4 ILs, based on amoxicillin, 6 ILs based on penicillin G and 4 ILs based on amphotericin B) and characterized by spectroscopic and analytical methods in order to confirm their structure and purity. The study of the biological properties of the synthesised ILs showed that some have antimicrobial activity against bacteria and yeast cells, even in resistant bacteria. Also this work allowed to show that ILs based on ampicillin could be used as anti-tumour agents. This proves that with a careful selection of the organic cation, it is possible to provoke important physico-chemical and biological alteration in the properties of ILs-APIs with great impact, having in mind their applications.
Resumo:
INTRODUCTION : Antimicrobial resistance is an increasing threat in hospitalized patients, and inappropriate empirical antimicrobial therapy is known to adversely affect outcomes in ventilator-associated pneumonia (VAP). The aim of this study was to evaluate antimicrobial usage, incidence, etiology, and antimicrobial resistance trends for prominent nosocomial pathogens causing ventilator-associated pneumonia in a clinical-surgical intensive care unit (ICU). METHODS : Gram-negative bacilli and Staphylococcus aureus causing VAP, as well as their antimicrobial resistance patterns and data on consumption (defined daily dose [DDD] per 1,000 patient days) of glycopeptides, extended-spectrum cephalosporins, and carbapenems in the unit were evaluated in two different periods (A and B). RESULTS: Antimicrobial use was high, mainly of broad-spectrum cephalosporins, with a significant increase in the consumption of glycopeptides (p < 0.0001) and carbapenems (p < 0.007) in period B. For Acinetobacter baumannii and members of the Enterobacteriaceae family, 5.27- and 3.06-fold increases in VAPs, respectively, were noted, and a significant increase in resistance rates was found for imipenem-resistant A. baumannii (p = 0.003) and third-generation cephalosporins-resistant Enterobacteriaceae (p = 0.01) isolates in this same period. CONCLUSIONS: Our results suggest that there is a link between antibiotics usage at institutional levels and resistant bacteria. The use of carbapenems was related to the high rate of resistance in A. baumannii and therefore a high consumption of imipenem/meropenem could play a major role in selective pressure exerted by antibiotics in A. baumannii strains.
Resumo:
Abstract INTRODUCTION: The aim of this study was to determine whether an herbal extract containing monoterpene exhibited activity against multidrug-resistant Staphylococcus aureus and Pseudomonas aeruginosa isolated from clinical infection samples. METHODS: The essential oil of Trachyspermum ammi (L.) Sprague ex Turrill (Apiaceae) fruit was extracted by hydrodistillation. Fruit residues were treated with hydrochloric acid and re-hydrodistilled to obtain volatile compounds. Compounds in the distilled oil were identified using gas-chromatography (GC) and GC-mass spectrometry (MS). The antibiotic susceptibility of all bacterial isolates was analyzed using both the disc diffusion method and determination of the minimum inhibitory concentration (MIC). The sensitivity of antibiotic-resistant isolates to essential oil was also determined by using the disc diffusion method and MIC determination. RESULTS: Of 26 clinical isolates, 92% were multidrug-resistant (MDR). Aromatic monoterpenes (thymol, paracymene, and gamma-terpinene) were the major (90%) components of the oil. Growth of S. aureus strains was successfully inhibited by the oil, with an inhibitory zone diameter (IZD) between 30-60mm and MIC <0.02μL/mL. The oil had no antimicrobial activity against clinical isolates of P. aeruginosa; rather, it prevented pigment production in these isolates. CONCLUSIONS: This study revealed that the essential oil of Trachyspermum ammi, which contains monoterpene, has good antibacterial potency. Monoterpenes could thus be incorporated into antimicrobial ointment formulas in order to treat highly drug-resistant S. aureus infections. Our findings also underscore the utility of research on natural products in order to combat bacterial multidrug resistance.
Resumo:
RESUMO: A infeção é frequente durante a doença crítica, quer como causa da doença crítica quer como complicação da sua evolução. Paradoxalmente, os avanços da medicina moderna aumentaram eles próprios o risco de infeção, ao permitir a sobrevida até idades avançadas, ao criar um novo grupo de doentes imunodeprimidos, nomeadamente doentes tratados com fármacos que interferem com as suas defesas naturais (corticóides, citostáticos), ao aumentar o tempo de vida de hospedeiros com comorbilidades debilitantes. Os antibióticos são um dos elos essenciais no tratamento da infeção. Contudo o seu uso também promove a seleção e crescimento de bactérias resistentes. Para além disso as doses convencionais de antibióticos foram selecionadas numa altura em que a resistência era um fenómeno raro e podem não ser atualmente as mais adequadas. Existe hoje muita evidência acumulada que os doentes críticos sofrem alterações da sua farmacocinética (PK) que podem facilitar a ocorrência de falência terapêutica ou de toxicidade tanto por sub como por sobredosagem de antibióticos. Essas alterações são complexas e difíceis de estudar. Finalmente, também a farmacodinâmica (PD) dos antibióticos pode estar alterada nesta população, podendo haver necessidade de ajustar os alvos terapêuticos de forma individual. O objetivo deste trabalho foi investigar a relação entre a terapêutica antibiótica, as suas características PK e PD, a carga bacteriana e o prognóstico dos doentes críticos. O plano de investigação incluiu: 1. Dados da epidemiologia portuguesa de doentes críticos com infeção; 2. Avaliação da relação entre a carga bacteriana, o tempo até ao início do tratamento antibiótico e o prognóstico dos doentes críticos; 3. Avaliação da evolução da PK durante o tratamento da infeção; 4. Um estudo multicêntrico para avaliação da eficácia da terapêutica com um β- lactâmico doseado de acordo com a relação PK/PD. Na introdução é descrita a importância dos antibióticos, a sua origem e o problema crescente das resistências bacterianas relacionadas com o seu emprego e abuso. É salientada a importância de racionalizar a posologia, de acordo com os conceitos de PK e de PD. No Capítulo 1 são apresentados dados de epidemiologia portuguesa de infeção em doentes críticos, sobretudo retirados de dois estudos prospetivos, observacionais, os quais incluíram mais de 50% da capacidade de internamento em cuidados intensivos existente em Portugal. No Capítulo 2 são descritos os conceitos de PK e as suas alterações nos doentes críticos. De seguida são revistos os conceitos de PD de antibióticos e a sua aplicação a esta população, em particular durante as infeções graves (Capítulo 3). Nos capítulos seguintes são aprofundadas estas alterações da PK nos doentes críticos e as suas causas, de forma a destacar a importância da monitorização da concentração dos antibióticos. São apresentados os dados duma revisão sistemática de PK de antibóticos nesta população (Capítulo 4), pormenorizadas as alterações da PD que comprometem a eficácia da terapêutica antibiótica, facilitam o desenvolvimento de resistências e podem levar a falência terapêutica (Capítulo 5). Consequentemente a compreensão global destas alterações, da sua relevância clínica e a revisão da evidência disponível facilitou o desenvolvimento do próprio plano global de investigação (Capítulos 6 e 7). No Capítulo 6.1 são descritos os antibióticos tempo-dependente e a importância de aumentar o seu tempo de perfusão. Foi desenhado um estudo multicêntrico para comparar a eficácia e segurança da perfusão contínua da piperacilina tazobactam (um antibiótico β-lactâmico associado a um inibidor de β-lactamases) com a mesma dose do antibiótico, administrado em dose convencional, intermitente. A importância de dosear corretamente os antibióticos concentração-dependente foi também avaliada num estudo a primeira dose dos aminoglicosídeos (Capítulo 6.2). Outras estratégias para melhorar os resultados assistenciais dos doentes infetados são abordadas no Capítulo 7, em particular a importância da terapêutica antibiótica precoce, a avaliação da carga bacteriana e a compreensão da variação da PK ao longo do tratamento da infeção. Foi desenvolvido um algoritmo de abordagem terapêutica que incluiu estas alterações da PK e da PD nos doentes críticos. Finalmente no Capítulo 8 são descritos mecanismos de desenvolvimento das resistências bacterianas bem como estratégias para a sua abordagem. O Capítulo final (Capítulo 9) aponta um plano para futuras áreas de trabalho. O elemento chave identificado neste trabalho de investigação é o reconhecimento da variabilidade significativa da PK dos antibióticos durante a doença crítica, a qual condiciona a sua posologia. Estas alterações estão relacionadas com a própria gravidade da doença e tendem a diminuir ao longo do seu tratamento. No entanto nem a gravidade da doença nem as características individuais as permitem prever de forma aceitável pelo que a utilização duma posologia universal, independente da situação clínica concreta, pode ser inadequada. As estratégias para melhorar os resultados assistenciais dos doentes críticos infetados devem ser baseadas na individualização da posologia antibiótica de acordo com os princípios da PK e da PD, preferencialmente apoiadas em doseamentos da sua concentração. ------------------------------------ ABSTRACT: Infection commonly occurred during critical illness, either as a cause or complicating the course of the disease. Advances in medicine had paradoxically increase the risk of infection, both by improving survival to older ages and by introducing a new group of immunosuppressed patients, those who are treated with drugs that interfere with their natural defenses (corticosteroids, cytostatics) and those who survived longer with aggressive diseases. Antibiotics are of paramount importance for treating infection. However the use of these drugs also promote the selection and growth of resistant bacteria. Furthermore conventional antibiotic doses were calculated for less severe patients during a time when resistance was rare. Nowadays there is increasing evidence that critically ill patients experiment altered pharmacokinetics (PK) that may lead to therapeutic failure and/or drug toxicity. Equally, such PK alterations are complex and challenging to investigate. Finally pharmacodynamics (PD) may also be different in this population and antibiotic targets may need to be tailored to the individual patient. The aim of this research was to investigate the relationship between antibiotic therapy, its PK and PD, bacterial burden and critically ill patients outcomes. The research plan comprised of: 1. Epidemiological portuguese data of critically ill infected patients; 2. Relationship between burden of bacteria, time until the start of antibiotics and patient outcomes; 3. Evaluation of PK during treatment of infection; 4. A multicentre study evaluating PK guided β-lactam therapy. The introductory chapter outlines the importance of antibiotics, its origins, the problem of increasing bacteria resistance, related to its use and overuse and the importance of rational drug dosing using PK and PD concepts. In Chapter 1 portuguese epidemiological data of infections in critically ill patients is presented, mostly coming from two prospective observational studies, encompassing more than 50% of critically ill beds available in Portugal. Chapter 2 describes the concepts of PK and the changes occurring in critically ill patients. This is followed by a review of the concepts of PD of antibiotics and its application to this population, especially during severe infections (Chapter 3). In the following chapter these changes in antibiotics PK in critical illness are and its causes are detailed, to outline the importance of therapeutic drug monitoring. Data on a systematic review of antibiotics PK in those patients is provided (Chapter 4). The following chapter (Chapter 5) elucidates important changes in PD, that compromises antibiotic therapy, facilitate the occurrence of resistance and may lead to therapeutic failure. Thus, an understanding of the clinical problem and available evidence facilitated the development of a comprehensive research plan (Chapter 6 and Chapter 7). Chapter 6.1 describes time-dependent antibiotics and the importance of extending its perfusion time. A multicenter study was designed to compare the continuous infusion of piperacillin tazobactam (a β-lactam antibiotic) with the same daily dose, prescribed in a conventional, intermittent dose. The importance of correct dosing of antibiotics was also assessed through a study addressing aminoglycoside (a concentration-dependent antibiotic) therapy (Chapter 6.2), focusing on its first dose. Strategies to improve severe infected patients outcomes were addressed in Chapter 7, namely the importance of early antibiotic therapy, assessing the burden of bacteria and understanding changes in antibiotic concentration during the course of infection. An algorithm to include all the described changes in both PK and PD of critically ill patients was developed. Finally in Chapter 8 mechanisms of the increasing resistance of bacteria are described and strategies to address that problem are proposed. The closing chapter (Chapter 9) lays a roadmap for future work. The key finding of this research is the significant variability of the antibiotics PK during critical illness, which makes dosing a challenging issue. These changes are related to the severity of the infection itself and improve through the course of the disease. However neither disease severity nor individual characteristics are useful to predict PK changes. Therefore, the use of a universal dose approach, regardless of the individual patient, may not be the best approach. Strategies to improve patients’ outcomes should be based on tailoring antibiotics to the individual patient, according to PK and PD principles, preferentially supported by therapeutic drug monitoring.
Resumo:
Background. Accurate quantification of the prevalence of human immunodeficiency virus type 1 (HIV-1) drug resistance in patients who are receiving antiretroviral therapy (ART) is difficult, and results from previous studies vary. We attempted to assess the prevalence and dynamics of resistance in a highly representative patient cohort from Switzerland. Methods. On the basis of genotypic resistance test results and clinical data, we grouped patients according to their risk of harboring resistant viruses. Estimates of resistance prevalence were calculated on the basis of either the proportion of individuals with a virologic failure or confirmed drug resistance (lower estimate) or the frequency-weighted average of risk group-specific probabilities for the presence of drug resistance mutations (upper estimate). Results. Lower and upper estimates of drug resistance prevalence in 8064 ART-exposed patients were 50% and 57% in 1999 and 37% and 45% in 2007, respectively. This decrease was driven by 2 mechanisms: loss to follow-up or death of high-risk patients exposed to mono- or dual-nucleoside reverse-transcriptase inhibitor therapy (lower estimates range from 72% to 75%) and continued enrollment of low-risk patients who were taking combination ART containing boosted protease inhibitors or nonnucleoside reverse-transcriptase inhibitors as first-line therapy (lower estimates range from 7% to 12%). A subset of 4184 participants (52%) had 1 study visit per year during 2002-2007. In this subset, lower and upper estimates increased from 45% to 49% and from 52% to 55%, respectively. Yearly increases in prevalence were becoming smaller in later years. Conclusions. Contrary to earlier predictions, in situations of free access to drugs, close monitoring, and rapid introduction of new potent therapies, the emergence of drug-resistant viruses can be minimized at the population level. Moreover, this study demonstrates the necessity of interpreting time trends in the context of evolving cohort populations.