983 resultados para Monte-Carlo method
Resumo:
In this study, a method for vehicle tracking through video analysis based on Markov chain Monte Carlo (MCMC) particle filtering with metropolis sampling is proposed. The method handles multiple targets with low computational requirements and is, therefore, ideally suited for advanced-driver assistance systems that involve real-time operation. The method exploits the removed perspective domain given by inverse perspective mapping (IPM) to define a fast and efficient likelihood model. Additionally, the method encompasses an interaction model using Markov Random Fields (MRF) that allows treatment of dependencies between the motions of targets. The proposed method is tested in highway sequences and compared to state-of-the-art methods for vehicle tracking, i.e., independent target tracking with Kalman filtering (KF) and joint tracking with particle filtering. The results showed fewer tracking failures using the proposed method.
Resumo:
Un escenario habitualmente considerado para el uso sostenible y prolongado de la energía nuclear contempla un parque de reactores rápidos refrigerados por metales líquidos (LMFR) dedicados al reciclado de Pu y la transmutación de actínidos minoritarios (MA). Otra opción es combinar dichos reactores con algunos sistemas subcríticos asistidos por acelerador (ADS), exclusivamente destinados a la eliminación de MA. El diseño y licenciamiento de estos reactores innovadores requiere herramientas computacionales prácticas y precisas, que incorporen el conocimiento obtenido en la investigación experimental de nuevas configuraciones de reactores, materiales y sistemas. A pesar de que se han construido y operado un cierto número de reactores rápidos a nivel mundial, la experiencia operacional es todavía reducida y no todos los transitorios se han podido entender completamente. Por tanto, los análisis de seguridad de nuevos LMFR están basados fundamentalmente en métodos deterministas, al contrario que las aproximaciones modernas para reactores de agua ligera (LWR), que se benefician también de los métodos probabilistas. La aproximación más usada en los estudios de seguridad de LMFR es utilizar una variedad de códigos, desarrollados a base de distintas teorías, en busca de soluciones integrales para los transitorios e incluyendo incertidumbres. En este marco, los nuevos códigos para cálculos de mejor estimación ("best estimate") que no incluyen aproximaciones conservadoras, son de una importancia primordial para analizar estacionarios y transitorios en reactores rápidos. Esta tesis se centra en el desarrollo de un código acoplado para realizar análisis realistas en reactores rápidos críticos aplicando el método de Monte Carlo. Hoy en día, dado el mayor potencial de recursos computacionales, los códigos de transporte neutrónico por Monte Carlo se pueden usar de manera práctica para realizar cálculos detallados de núcleos completos, incluso de elevada heterogeneidad material. Además, los códigos de Monte Carlo se toman normalmente como referencia para los códigos deterministas de difusión en multigrupos en aplicaciones con reactores rápidos, porque usan secciones eficaces punto a punto, un modelo geométrico exacto y tienen en cuenta intrínsecamente la dependencia angular de flujo. En esta tesis se presenta una metodología de acoplamiento entre el conocido código MCNP, que calcula la generación de potencia en el reactor, y el código de termohidráulica de subcanal COBRA-IV, que obtiene las distribuciones de temperatura y densidad en el sistema. COBRA-IV es un código apropiado para aplicaciones en reactores rápidos ya que ha sido validado con resultados experimentales en haces de barras con sodio, incluyendo las correlaciones más apropiadas para metales líquidos. En una primera fase de la tesis, ambos códigos se han acoplado en estado estacionario utilizando un método iterativo con intercambio de archivos externos. El principal problema en el acoplamiento neutrónico y termohidráulico en estacionario con códigos de Monte Carlo es la manipulación de las secciones eficaces para tener en cuenta el ensanchamiento Doppler cuando la temperatura del combustible aumenta. Entre todas las opciones disponibles, en esta tesis se ha escogido la aproximación de pseudo materiales, y se ha comprobado que proporciona resultados aceptables en su aplicación con reactores rápidos. Por otro lado, los cambios geométricos originados por grandes gradientes de temperatura en el núcleo de reactores rápidos resultan importantes para la neutrónica como consecuencia del elevado recorrido libre medio del neutrón en estos sistemas. Por tanto, se ha desarrollado un módulo adicional que simula la geometría del reactor en caliente y permite estimar la reactividad debido a la expansión del núcleo en un transitorio. éste módulo calcula automáticamente la longitud del combustible, el radio de la vaina, la separación de los elementos de combustible y el radio de la placa soporte en función de la temperatura. éste efecto es muy relevante en transitorios sin inserción de bancos de parada. También relacionado con los cambios geométricos, se ha implementado una herramienta que, automatiza el movimiento de las barras de control en busca d la criticidad del reactor, o bien calcula el valor de inserción axial las barras de control. Una segunda fase en la plataforma de cálculo que se ha desarrollado es la simulació dinámica. Puesto que MCNP sólo realiza cálculos estacionarios para sistemas críticos o supercríticos, la solución más directa que se propone sin modificar el código fuente de MCNP es usar la aproximación de factorización de flujo, que resuelve por separado la forma del flujo y la amplitud. En este caso se han estudiado en profundidad dos aproximaciones: adiabática y quasiestática. El método adiabático usa un esquema de acoplamiento que alterna en el tiempo los cálculos neutrónicos y termohidráulicos. MCNP calcula el modo fundamental de la distribución de neutrones y la reactividad al final de cada paso de tiempo, y COBRA-IV calcula las propiedades térmicas en el punto intermedio de los pasos de tiempo. La evolución de la amplitud de flujo se calcula resolviendo las ecuaciones de cinética puntual. Este método calcula la reactividad estática en cada paso de tiempo que, en general, difiere de la reactividad dinámica que se obtendría con la distribución de flujo exacta y dependiente de tiempo. No obstante, para entornos no excesivamente alejados de la criticidad ambas reactividades son similares y el método conduce a resultados prácticos aceptables. Siguiendo esta línea, se ha desarrollado después un método mejorado para intentar tener en cuenta el efecto de la fuente de neutrones retardados en la evolución de la forma del flujo durante el transitorio. El esquema consiste en realizar un cálculo cuasiestacionario por cada paso de tiempo con MCNP. La simulación cuasiestacionaria se basa EN la aproximación de fuente constante de neutrones retardados, y consiste en dar un determinado peso o importancia a cada ciclo computacial del cálculo de criticidad con MCNP para la estimación del flujo final. Ambos métodos se han verificado tomando como referencia los resultados del código de difusión COBAYA3 frente a un ejercicio común y suficientemente significativo. Finalmente, con objeto de demostrar la posibilidad de uso práctico del código, se ha simulado un transitorio en el concepto de reactor crítico en fase de diseño MYRRHA/FASTEF, de 100 MW de potencia térmica y refrigerado por plomo-bismuto. ABSTRACT Long term sustainable nuclear energy scenarios envisage a fleet of Liquid Metal Fast Reactors (LMFR) for the Pu recycling and minor actinides (MAs) transmutation or combined with some accelerator driven systems (ADS) just for MAs elimination. Design and licensing of these innovative reactor concepts require accurate computational tools, implementing the knowledge obtained in experimental research for new reactor configurations, materials and associated systems. Although a number of fast reactor systems have already been built, the operational experience is still reduced, especially for lead reactors, and not all the transients are fully understood. The safety analysis approach for LMFR is therefore based only on deterministic methods, different from modern approach for Light Water Reactors (LWR) which also benefit from probabilistic methods. Usually, the approach adopted in LMFR safety assessments is to employ a variety of codes, somewhat different for the each other, to analyze transients looking for a comprehensive solution and including uncertainties. In this frame, new best estimate simulation codes are of prime importance in order to analyze fast reactors steady state and transients. This thesis is focused on the development of a coupled code system for best estimate analysis in fast critical reactor. Currently due to the increase in the computational resources, Monte Carlo methods for neutrons transport can be used for detailed full core calculations. Furthermore, Monte Carlo codes are usually taken as reference for deterministic diffusion multigroups codes in fast reactors applications because they employ point-wise cross sections in an exact geometry model and intrinsically account for directional dependence of the ux. The coupling methodology presented here uses MCNP to calculate the power deposition within the reactor. The subchannel code COBRA-IV calculates the temperature and density distribution within the reactor. COBRA-IV is suitable for fast reactors applications because it has been validated against experimental results in sodium rod bundles. The proper correlations for liquid metal applications have been added to the thermal-hydraulics program. Both codes are coupled at steady state using an iterative method and external files exchange. The main issue in the Monte Carlo/thermal-hydraulics steady state coupling is the cross section handling to take into account Doppler broadening when temperature rises. Among every available options, the pseudo materials approach has been chosen in this thesis. This approach obtains reasonable results in fast reactor applications. Furthermore, geometrical changes caused by large temperature gradients in the core, are of major importance in fast reactor due to the large neutron mean free path. An additional module has therefore been included in order to simulate the reactor geometry in hot state or to estimate the reactivity due to core expansion in a transient. The module automatically calculates the fuel length, cladding radius, fuel assembly pitch and diagrid radius with the temperature. This effect will be crucial in some unprotected transients. Also related to geometrical changes, an automatic control rod movement feature has been implemented in order to achieve a just critical reactor or to calculate control rod worth. A step forward in the coupling platform is the dynamic simulation. Since MCNP performs only steady state calculations for critical systems, the more straight forward option without modifying MCNP source code, is to use the flux factorization approach solving separately the flux shape and amplitude. In this thesis two options have been studied to tackle time dependent neutronic simulations using a Monte Carlo code: adiabatic and quasistatic methods. The adiabatic methods uses a staggered time coupling scheme for the time advance of neutronics and the thermal-hydraulics calculations. MCNP computes the fundamental mode of the neutron flux distribution and the reactivity at the end of each time step and COBRA-IV the thermal properties at half of the the time steps. To calculate the flux amplitude evolution a solver of the point kinetics equations is used. This method calculates the static reactivity in each time step that in general is different from the dynamic reactivity calculated with the exact flux distribution. Nevertheless, for close to critical situations, both reactivities are similar and the method leads to acceptable practical results. In this line, an improved method as an attempt to take into account the effect of delayed neutron source in the transient flux shape evolutions is developed. The scheme performs a quasistationary calculation per time step with MCNP. This quasistationary simulations is based con the constant delayed source approach, taking into account the importance of each criticality cycle in the final flux estimation. Both adiabatic and quasistatic methods have been verified against the diffusion code COBAYA3, using a theoretical kinetic exercise. Finally, a transient in a critical 100 MWth lead-bismuth-eutectic reactor concept is analyzed using the adiabatic method as an application example in a real system.
Resumo:
Multi-label classification (MLC) is the supervised learning problem where an instance may be associated with multiple labels. Modeling dependencies between labels allows MLC methods to improve their performance at the expense of an increased computational cost. In this paper we focus on the classifier chains (CC) approach for modeling dependencies. On the one hand, the original CC algorithm makes a greedy approximation, and is fast but tends to propagate errors down the chain. On the other hand, a recent Bayes-optimal method improves the performance, but is computationally intractable in practice. Here we present a novel double-Monte Carlo scheme (M2CC), both for finding a good chain sequence and performing efficient inference. The M2CC algorithm remains tractable for high-dimensional data sets and obtains the best overall accuracy, as shown on several real data sets with input dimension as high as 1449 and up to 103 labels.
Resumo:
This work analysed the feasibility of using a fast, customized Monte Carlo (MC) method to perform accurate computation of dose distributions during pre- and intraplanning of intraoperative electron radiation therapy (IOERT) procedures. The MC method that was implemented, which has been integrated into a specific innovative simulation and planning tool, is able to simulate the fate of thousands of particles per second, and it was the aim of this work to determine the level of interactivity that could be achieved. The planning workflow enabled calibration of the imaging and treatment equipment, as well as manipulation of the surgical frame and insertion of the protection shields around the organs at risk and other beam modifiers. In this way, the multidisciplinary team involved in IOERT has all the tools necessary to perform complex MC dosage simulations adapted to their equipment in an efficient and transparent way. To assess the accuracy and reliability of this MC technique, dose distributions for a monoenergetic source were compared with those obtained using a general-purpose software package used widely in medical physics applications. Once accuracy of the underlying simulator was confirmed, a clinical accelerator was modelled and experimental measurements in water were conducted. A comparison was made with the output from the simulator to identify the conditions under which accurate dose estimations could be obtained in less than 3 min, which is the threshold imposed to allow for interactive use of the tool in treatment planning. Finally, a clinically relevant scenario, namely early-stage breast cancer treatment, was simulated with pre- and intraoperative volumes to verify that it was feasible to use the MC tool intraoperatively and to adjust dose delivery based on the simulation output, without compromising accuracy. The workflow provided a satisfactory model of the treatment head and the imaging system, enabling proper configuration of the treatment planning system and providing good accuracy in the dosage simulation.
Resumo:
A Monte Carlo simulation method for globular proteins, called extended-scaled-collective-variable (ESCV) Monte Carlo, is proposed. This method combines two Monte Carlo algorithms known as entropy-sampling and scaled-collective-variable algorithms. Entropy-sampling Monte Carlo is able to sample a large configurational space even in a disordered system that has a large number of potential barriers. In contrast, scaled-collective-variable Monte Carlo provides an efficient sampling for a system whose dynamics is highly cooperative. Because a globular protein is a disordered system whose dynamics is characterized by collective motions, a combination of these two algorithms could provide an optimal Monte Carlo simulation for a globular protein. As a test case, we have carried out an ESCV Monte Carlo simulation for a cell adhesive Arg-Gly-Asp-containing peptide, Lys-Arg-Cys-Arg-Gly-Asp-Cys-Met-Asp, and determined the conformational distribution at 300 K. The peptide contains a disulfide bridge between the two cysteine residues. This bond mimics the strong geometrical constraints that result from a protein's globular nature and give rise to highly cooperative dynamics. Computation results show that the ESCV Monte Carlo was not trapped at any local minimum and that the canonical distribution was correctly determined.
Resumo:
We present Tethered Monte Carlo, a simple, general purpose method of computing the effective potential of the order parameter (Helmholtz free energy). This formalism is based on a new statistical ensemble, closely related to the micromagnetic one, but with an extended configuration space (through Creutz-like demons). Canonical averages for arbitrary values of the external magnetic field are computed without additional simulations. The method is put to work in the two-dimensional Ising model, where the existence of exact results enables us to perform high precision checks. A rather peculiar feature of our implementation, which employs a local Metropolis algorithm, is the total absence, within errors, of critical slowing down for magnetic observables. Indeed, high accuracy results are presented for lattices as large as L = 1024.
Resumo:
In the Monte Carlo simulation of both lattice field theories and of models of statistical mechanics, identities verified by exact mean values, such as Schwinger-Dyson equations, Guerra relations, Callen identities, etc., provide well-known and sensitive tests of thermalization bias as well as checks of pseudo-random-number generators. We point out that they can be further exploited as control variates to reduce statistical errors. The strategy is general, very simple, and almost costless in CPU time. The method is demonstrated in the twodimensional Ising model at criticality, where the CPU gain factor lies between 2 and 4.
Resumo:
We present Tethered Monte Carlo, a simple, general purpose method of computing the effective potential of the order parameter (Helmholtz free energy). This formalism is based on a new statistical ensemble, closely related to the micromagnetic one, but with an extended configuration space (through Creutz-like demons). Canonical averages for arbitrary values of the external magnetic field are computed without additional simulations. The method is put to work in the two-dimensional Ising model, where the existence of exact results enables us to perform high precision checks. A rather peculiar feature of our implementation, which employs a local Metropolis algorithm, is the total absence, within errors, of critical slowing down for magnetic observables. Indeed, high accuracy results are presented for lattices as large as L = 1024.
Resumo:
We introduce a new class of quantum Monte Carlo methods, based on a Gaussian quantum operator representation of fermionic states. The methods enable first-principles dynamical or equilibrium calculations in many-body Fermi systems, and, combined with the existing Gaussian representation for bosons, provide a unified method of simulating Bose-Fermi systems. As an application relevant to the Fermi sign problem, we calculate finite-temperature properties of the two dimensional Hubbard model and the dynamics in a simple model of coherent molecular dissociation.
Resumo:
In this paper we consider the adsorption of argon on the surface of graphitized thermal carbon black and in slit pores at temperatures ranging from subcritical to supercritical conditions by the method of grand canonical Monte Carlo simulation. Attention is paid to the variation of the adsorbed density when the temperature crosses the critical point. The behavior of the adsorbed density versus pressure (bulk density) shows interesting behavior at temperatures in the vicinity of and those above the critical point and also at extremely high pressures. Isotherms at temperatures greater than the critical temperature exhibit a clear maximum, and near the critical temperature this maximum is a very sharp spike. Under the supercritical conditions and very high pressure the excess of adsorbed density decreases towards zero value for a graphite surface, while for slit pores negative excess density is possible at extremely high pressures. For imperfect pores (defined as pores that cannot accommodate an integral number of parallel layers under moderate conditions) the pressure at which the excess pore density becomes negative is less than that for perfect pores, and this is due to the packing effect in those imperfect pores. However, at extremely high pressure molecules can be packed in parallel layers once chemical potential is great enough to overcome the repulsions among adsorbed molecules. (c) 2005 American Institute of Physics.
Resumo:
In recent work we have developed a novel variational inference method for partially observed systems governed by stochastic differential equations. In this paper we provide a comparison of the Variational Gaussian Process Smoother with an exact solution computed using a Hybrid Monte Carlo approach to path sampling, applied to a stochastic double well potential model. It is demonstrated that the variational smoother provides us a very accurate estimate of mean path while conditional variance is slightly underestimated. We conclude with some remarks as to the advantages and disadvantages of the variational smoother. © 2008 Springer Science + Business Media LLC.
Resumo:
In this paper we develop set of novel Markov chain Monte Carlo algorithms for Bayesian smoothing of partially observed non-linear diffusion processes. The sampling algorithms developed herein use a deterministic approximation to the posterior distribution over paths as the proposal distribution for a mixture of an independence and a random walk sampler. The approximating distribution is sampled by simulating an optimized time-dependent linear diffusion process derived from the recently developed variational Gaussian process approximation method. Flexible blocking strategies are introduced to further improve mixing, and thus the efficiency, of the sampling algorithms. The algorithms are tested on two diffusion processes: one with double-well potential drift and another with SINE drift. The new algorithm's accuracy and efficiency is compared with state-of-the-art hybrid Monte Carlo based path sampling. It is shown that in practical, finite sample, applications the algorithm is accurate except in the presence of large observation errors and low observation densities, which lead to a multi-modal structure in the posterior distribution over paths. More importantly, the variational approximation assisted sampling algorithm outperforms hybrid Monte Carlo in terms of computational efficiency, except when the diffusion process is densely observed with small errors in which case both algorithms are equally efficient.
Resumo:
2000 Mathematics Subject Classification: 91B28, 65C05.
Resumo:
An iterative Monte Carlo algorithm for evaluating linear functionals of the solution of integral equations with polynomial non-linearity is proposed and studied. The method uses a simulation of branching stochastic processes. It is proved that the mathematical expectation of the introduced random variable is equal to a linear functional of the solution. The algorithm uses the so-called almost optimal density function. Numerical examples are considered. Parallel implementation of the algorithm is also realized using the package ATHAPASCAN as an environment for parallel realization.The computational results demonstrate high parallel efficiency of the presented algorithm and give a good solution when almost optimal density function is used as a transition density.
Resumo:
In this paper we develop set of novel Markov Chain Monte Carlo algorithms for Bayesian smoothing of partially observed non-linear diffusion processes. The sampling algorithms developed herein use a deterministic approximation to the posterior distribution over paths as the proposal distribution for a mixture of an independence and a random walk sampler. The approximating distribution is sampled by simulating an optimized time-dependent linear diffusion process derived from the recently developed variational Gaussian process approximation method. The novel diffusion bridge proposal derived from the variational approximation allows the use of a flexible blocking strategy that further improves mixing, and thus the efficiency, of the sampling algorithms. The algorithms are tested on two diffusion processes: one with double-well potential drift and another with SINE drift. The new algorithm's accuracy and efficiency is compared with state-of-the-art hybrid Monte Carlo based path sampling. It is shown that in practical, finite sample applications the algorithm is accurate except in the presence of large observation errors and low to a multi-modal structure in the posterior distribution over paths. More importantly, the variational approximation assisted sampling algorithm outperforms hybrid Monte Carlo in terms of computational efficiency, except when the diffusion process is densely observed with small errors in which case both algorithms are equally efficient. © 2011 Springer-Verlag.